Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761326

RESUMO

Early handling (EH), the brief separation of pups from their mother during early life, has been shown to exert beneficial effects. However, the impact of EH in a high anxiety background as well as the role of brain mitochondria in shaping EH-driven responses remain elusive.Here, we used a high (HAB) vs. normal (NAB) anxiety-related behavior mouse model to study how EH affects pup and dam behavior in divergent anxiety backgrounds. We also investigated EH-induced effects at the protein and mRNA levels in adult male HAB mice in the hypothalamus, the prefrontal cortex, and the hippocampus by examining the same mitochondrial/energy pathways and mitochondrial dynamics mechanisms (fission, fusion, biogenesis, and mitophagy) in all three brain regions.EH exerts anxiolytic effects in adult HAB but not NAB male mice and does not affect HAB or NAB maternal behavior, although basal HAB vs. NAB maternal behaviors differ. In adult HAB male mice, EH does not impact oxidative phosphorylation (OXPHOS) and oxidative stress in any of the brain regions studied but leads to increased protein expression of glycolysis enzymes and a correlation of anxiety-related behavior with Krebs cycle enzymes in HAB mice in the hypothalamus. Intriguingly, EH alters mitochondrial dynamics by increasing hypothalamic DRP1, OPA1, and PGC1a protein levels. At the mRNA level, we observe altered, EH-driven mitochondrial dynamics mRNA signatures which predominantly affect the prefrontal cortex.Taken together, our results show that EH exerts anxiolytic effects in adulthood in high anxiety and modulates mitochondrial dynamics pathways in a brain region-specific manner.

2.
Brain Sci ; 14(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38391714

RESUMO

Developmental dyslexia (DD) is a learning disorder. Although risk genes have been identified, environmental factors, and particularly stress arising from constant difficulties, have been associated with the occurrence of DD by affecting brain plasticity and function, especially during critical neurodevelopmental stages. In this work, electroencephalogram (EEG) findings were coupled with the genetic and epigenetic molecular signatures of individuals with DD and matched controls. Specifically, we investigated the genetic and epigenetic correlates of key stress-associated genes (NR3C1, NR3C2, FKBP5, GILZ, SLC6A4) with psychological characteristics (depression, anxiety, and stress) often included in DD diagnostic criteria, as well as with brain EEG findings. We paired the observed brain rhythms with the expression levels of stress-related genes, investigated the epigenetic profile of the stress regulator glucocorticoid receptor (GR) and correlated such indices with demographic findings. This study presents a new interdisciplinary approach and findings that support the idea that stress, attributed to the demands of the school environment, may act as a contributing factor in the occurrence of the DD phenotype.

3.
Stress ; 24(6): 952-964, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34553679

RESUMO

Psychological stress and stress-related disorders constitute a major health problem in modern societies. Although the brain circuits involved in emotional processing are intensively studied, little is known about the implication of cerebellum in stress responses whereas the molecular changes induced by stress exposure in cerebellum remain largely unexplored. Here, we investigated the effects of acute stress exposure on mouse cerebellum. We used a forced swim test (FST) paradigm as an acute stressor. We then analyzed the cerebellar metabolomic profiles of stressed (n = 11) versus control (n = 11) male CD1 mice by a Nuclear Magnetic Resonance (NMR)-based, untargeted metabolomics approach. Our results showed altered levels of 19 out of the 47 annotated metabolites, which are implicated in neurotransmission and N-acetylaspartic acid (NAA) turnover, as well as in energy and purine/pyrimidine metabolism. We also correlated individual metabolite levels with FST behavioral parameters, and reported associations between FST readouts and levels of 4 metabolites. This work indicates an altered metabolomic signature after acute stress in the cerebellum and highlights a previously unexplored involvement of cerebellum in stress responses.


Assuntos
Metabolômica , Estresse Psicológico , Animais , Cerebelo/metabolismo , Modelos Animais de Doenças , Masculino , Metabolômica/métodos , Camundongos , Estresse Psicológico/metabolismo , Natação
4.
Eur J Neurosci ; 53(9): 3002-3018, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33226682

RESUMO

Dysfunction of metabolic pathways characterises a plethora of common pathologies and has emerged as an underlying hallmark of disease phenotypes. Here, we focus on psychiatric disorders and brain tumours and explore changes in the interplay between glycolysis and mitochondrial energy metabolism in the brain. We discuss alterations in glycolysis versus core mitochondrial metabolic pathways, such as the tricarboxylic acid cycle and oxidative phosphorylation, in major psychiatric disorders and brain tumours. We investigate potential common patterns of altered mitochondrial metabolism in different brain regions and sample types and explore how changes in mitochondrial number, shape and morphology affect disease-related manifestations. We also highlight the potential of pharmacologically targeting mitochondria to achieve therapeutic effects.


Assuntos
Neoplasias Encefálicas , Transtornos Mentais , Metabolismo Energético , Glicólise , Humanos , Mitocôndrias/metabolismo , Fosforilação Oxidativa
5.
Front Hum Neurosci ; 13: 327, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632253

RESUMO

Developmental dyslexia (DD) is a multi-system disorder, combining influences of susceptibility genes and environmental factors. The causative interaction between specific genetic factors, brain regions, and personality/mental disorders, as well as specific learning disabilities, has been thoroughly investigated with regard to the approach of developing a multifaceted diagnostic procedure with an intervention strategy potential. In an attempt to add new translational evidence to the interconnection of the above factors in the occurrence of DD, we performed a combinatorial analysis of brain asymmetries, personality traits, cognitive and learning skills, and expression profiles of selected genes in an adult, early diagnosed with DD, and in his son of typical development. We focused on the expression of genes, based on the assumption that the regulation of transcription may be affected by genetic and epigenetic factors. The results highlighted a potential chain link between neuroplasticity-related as well as stress-related genes, such as BDNF, Sox4, mineralocorticoid receptor (MR), and GILZ, leftward asymmetries in the amygdala and selective cerebellum lobules, and tendencies for personality disorders and dyslexia. This correlation may reflect the presence of a specific neuro-epigenetic component of DD, ensuing from the continuous, multifaceted difficulties in the acquisition of cognitive and learning skills, which in turn may act as a fostering mechanism for the onset of long-term disorders. This is in line with recent findings demonstrating a dysfunction in processes supported by rapid neural adaptation in children and adults with dyslexia. Accordingly, the co-evaluation of all the above parameters may indicate a stress-related dyslexia endophenotype that should be carefully considered for a more integrated diagnosis and effective intervention.

6.
Front Neurosci ; 13: 833, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507354

RESUMO

Post-partum depression (PPD) is a severe psychiatric disorder affecting ∼15% of young mothers. Early life stressful conditions in periconceptual, fetal and early infant periods or exposure to maternal psychiatric disorders, have been linked to adverse childhood outcomes interfering with physiological, cognitive and emotional development. The molecular mechanisms of PPD are not yet fully understood. Unraveling the molecular underpinnings of PPD will allow timely detection and establishment of effective therapeutic approaches. To investigate the underlying molecular correlates of PPD in peripheral material, we compared the serum metabolomes of an in detail characterized group of mothers suffering from PPD and a control group of mothers, all from Heraklion, Crete in Greece. Serum samples were analyzed by a mass spectrometry platform for targeted metabolomics, based on selected reaction monitoring (SRM), which measures the levels of up to 300 metabolites. In the PPD group, we observed increased levels of glutathione-disulfide, adenylosuccinate, and ATP, which associate with oxidative stress, nucleotide biosynthesis and energy production pathways. We also followed up the metabolomic findings in a validation cohort of PPD mothers and controls. To the very best of our knowledge, this is the first metabolomic serum analysis in PPD. Our data show that molecular changes related to PPD are detectable in peripheral material, thus paving the way for additional studies in order to shed light on the molecular correlates of PPD.

7.
Front Psychiatry ; 10: 220, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057437

RESUMO

Early-life stressful experiences are critical for plasticity and development, shaping adult neuroendocrine response and future health. Stress response is mediated by the autonomous nervous system and the hypothalamic-pituitary-adrenal (HPA) axis while various environmental stimuli are encoded via epigenetic marks. The stress response system maintains homeostasis by regulating adaptation to the environmental changes. Pre-conceptual and in utero stressors form the fetal epigenetic profile together with the individual genetic profile, providing the background for individual stress response, vulnerability, or resilience. Postnatal and adult stressful experiences may act as the definitive switch. This review addresses the issue of how preconceptual in utero and postnatal events, together with individual differences, shape future stress responses. Putative markers of early-life adverse effects such as prematurity and low birth weight are emphasized, and the epigenetic, mitochondrial, and genomic architecture regulation of such events are discussed.

8.
Mol Med Rep ; 16(6): 8808-8818, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29039589

RESUMO

Two cases of liveborn unrelated children with developmental delay and overlapping unbalanced translocations der(8)t(8;16)(p23.2;q23.3) and der (8)t(8;16)(p23.1;q23.1), leading to partial monosomy 8p and partial trisomy 16q, are reported in the present study. The first patient was a 10­year­old boy with mild developmental delay and minor congenital anomalies (borderline microcephaly, clinodactyly, hypertelorism, epicanthus, mild systolic murmur and kidney reflux). The second patient was a 3 year­old girl with developmental delay, gross motor milestone delay and dysmorphic features. Array­comparative genomic hybridization analysis revealed that partial chromosome 8p monosomy extended from 8p23.2 to 8pter (4.8 Mb) in Patient 1 and from 8p23.1 to 8pter (9.5 Mb) in Patient 2, and partial chromosome 16 trisomy extended from 16q23.3 to 16qter (5.6 Mb) in Patient 1 and from 16q23.1 to 16qter (11.7 Mb) in Patient 2. The mechanism of appearance of the rearrangement in association with the genes involved and the architecture of the region is discussed.


Assuntos
Deleção Cromossômica , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Estudos de Associação Genética , Trissomia , Anormalidades Múltiplas , Criança , Cromossomos Humanos Par 16 , Cromossomos Humanos Par 8 , Biologia Computacional/métodos , Ecocardiografia , Dosagem de Genes , Variação Genética , Humanos , Masculino , Repetições de Microssatélites/genética , Fenótipo
9.
Biochim Biophys Acta Mol Cell Res ; 1864(8): 1371-1381, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28483487

RESUMO

Mechanical stress exerts a substantial role on skeletal-cell renewal systems, whereas accumulating evidence suggests that epigenetic mechanisms induce changes and differential gene expression. Although the underlying mechanisms remain to be fully elucidated, our study suggests that the influence of the long term mechanical stimulation elicits epigenetic modifications controlling osteogenic differentiation of human adipose tissue multipotential stromal cells (hAT-MSCs) and contributes to an accelerating in vitro osteogenesis. GNAS imprinting gene acts as a critical regulator of osteoblast differentiation and is implicated in human genetic disorders with pathological formation of ectopic-skeletal bone. Investigating a wide variety of stimuli, we showed that daily mechanical stretch on hAT-MSCs of 7th and 15th days' intervals induced a significant down-regulation in DNA methylation status of critical CpG sites of NESP and GNASXL isoforms, accompanied by up-regulation of the corresponding gene transcripts, and osteogenic differentiation earlier in culture. Importantly, methylation analysis of differentiating bone marrow-derived MSCs revealed similar methylation patterns. Bioinformatic analysis further showed that all CpG islands exhibiting significant methylation alterations encompassed transcriptional repressor CTCF binding sites. We hereby emphasize the need to investigate the epigenetic alterations on hAT-MSCs during environmental mechanical forces and to consider how the knowledge gained through these studies may foster new means of symptoms prevention and management of ectopic bone formation in the clinic.


Assuntos
Cromograninas/genética , Ilhas de CpG , Epigênese Genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Osteoblastos/metabolismo , Osteogênese/genética , Estresse Mecânico , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Adulto , Idoso , Sequência de Bases , Sítios de Ligação , Fator de Ligação a CCCTC , Diferenciação Celular , Cromograninas/metabolismo , Biologia Computacional , Metilação de DNA , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Osteoblastos/citologia , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Repressoras
10.
Cytogenet Genome Res ; 142(4): 227-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24733116

RESUMO

The 4q deletion syndrome phenotype consists of growth failure and developmental delay, minor craniofacial dysmorphism, digital anomalies, and cardiac and skeletal defects. We have identified an inversion (inv(1)(q25.2q31.1)) and an interstitial deletion in a boy with developmental delay using array-comparative genomic hybridization. This de novo deletion is located at 4q31.21q31.22 (145,963,820- 147,044,764), its size is 0.9-1.1 Mb, and it contains 7 genes (ABCE1, OTUD4, SMAD1, MMAA, C4orf51, ZNF827, and ANAPC10) as well as 5 retrotransposon-derived pseudogenes. Bioinformatic analysis revealed that while small copy number variations seem to have no impact on the phenotype, larger deletions or duplications in the deleted region are associated with developmental delay. Additionally, we found a higher coverage in transposable element sequences in the 4q31.21q31.22 region compared to that of the expected repeat density when regarding any random genome region. Transposable elements might have contributed to the reshaping of the genome architecture and, most importantly, we identified 3 L1PA family members in the breakpoint regions, suggesting their possible contribution in the mechanism underlying the appearance of this deletion. In conclusion, this is one of the smallest deletions reported associated with developmental delay, and we discuss the possible role of genomic features having an impact on the phenotype.


Assuntos
Sequência de Bases/genética , Transtornos Cromossômicos/genética , Deficiências do Desenvolvimento/genética , Anormalidades Múltiplas/genética , Deleção Cromossômica , Inversão Cromossômica/genética , Cromossomos Humanos Par 4/genética , Anormalidades Craniofaciais , Fácies , Humanos , Deficiência Intelectual/genética , Cariótipo , Masculino , Atrofia Muscular/genética
11.
Stress ; 16(6): 689-97, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23786541

RESUMO

Retrotransposons participate in cellular responses elicited by stress, and DNA methylation plays an important role in retrotransposon silencing and genomic imprinting during mammalian development. Assisted reproduction technologies (ARTs) may be associated with increased stress and risk of epigenetic changes in the conceptus. There are similarities in the nature and regulation of LTR retrotransposons and imprinted genes. Here, we investigated whether the methylation status of Human Endogenous Retroviruses (HERV)-K LTR retrotransposons and the imprinting signatures of the DLK1/MEG3. p57(KIP2) and IGF2/H19 gene loci are linked during early human embryogenesis by examining trophoblast samples from ART pregnancies and preimplantation genetic diagnosis (PGD) cases and matched naturally conceived controls. Methylation analysis revealed that HERV-Ks were totally methylated in the majority of controls while, in contrast, an altered pattern was detected in ART-PGD samples that were characterized by a hemi-methylated status. Importantly, DLK1/MEG3 demonstrated disturbed methylation in ART-PGD samples compared to controls and this was associated with altered HERV-K methylation. No differences were detected in p57(KIP2) and IGF2/H19 methylation patterns between ART-PGD and naturally conceived controls. Using bioinformatics, we found that while the genome surrounding the p57(KIP2) and IGF2/H19 genes differentially methylated regions had low coverage in transposable element (TE) sequences, the respective one of DLK1/MEG3 was characterized by an almost 2-fold higher coverage. Moreover, our analyses revealed the presence of KAP1-binding sites residing within retrotransposon sequences only in the DLK1/MEG3 locus. Our results demonstrate that altered HERV-K methylation in the ART-PGD conceptuses is correlated with abnormal imprinting of the DLK1/MEG3 locus and suggest that TEs may be affecting the establishment of genomic imprinting under stress conditions.


Assuntos
Retrovirus Endógenos/genética , Impressão Genômica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Diagnóstico Pré-Implantação , RNA Longo não Codificante/genética , Estresse Fisiológico/genética , Animais , Proteínas de Ligação ao Cálcio , Inibidor de Quinase Dependente de Ciclina p57/genética , Metilação de DNA , Epigênese Genética , Feminino , Humanos , Fator de Crescimento Insulin-Like II/genética , Gravidez , Diagnóstico Pré-Implantação/efeitos adversos , Técnicas de Reprodução Assistida/efeitos adversos , Retroelementos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...