Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(28): 5899-5913, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37433135

RESUMO

We report experimental and computational studies of protonated adenine C-8 σ-radicals that are presumed yet elusive reactive intermediates of oxidative damage to nucleic acids. The radicals were generated in the gas phase by the collision-induced dissociation of C-8-Br and C-8-I bonds in protonated 8-bromo- and 8-iodoadenine as well as by 8-bromo- and 8-iodo-9-methyladenine. Protonation by electrospray of 8-bromo- and 8-iodoadenine was shown by cyclic-ion mobility mass spectrometry (c-IMS) to form the N-1-H, N-9-H and N-3-H, N-7-H protomers in 85:15 and 81:19 ratios, respectively, in accordance with the equilibrium populations of these protomers in water-solvated ions that were calculated by density functional theory (DFT). Protonation of 8-halogenated 9-methyladenines yielded single N-1-H protomers, which was consistent with their thermodynamic stability. The radicals produced from the 8-bromo and 8-iodo adenine cations were characterized by UV-vis photodissociation action spectroscopy (UVPD) and c-IMS. UVPD revealed the formation of C-8 σ-radicals along with N-3-H, N-7-H-adenine π-radicals that arose as secondary products by hydrogen atom migrations. The isomers were identified by matching their action spectra against the calculated vibronic absorption spectra. Deuterium isotope effects were found to slow the isomerization and increase the population of C-8 σ-radicals. The adenine cation radicals were separated by c-IMS and identified by their collision cross sections, which were measured relative to the canonical N-9-H adenine cation radical that was cogenerated in situ as an internal standard. Ab initio CCSD(T)/CBS calculations of isomer energies showed that the adenine C-8 σ-radicals were local energy minima with relative energies at 76-79 kJ mol-1 above that of the canonical adenine cation radical. Rice-Ramsperger-Kassel-Marcus calculations of unimolecular rate constants for hydrogen and deuterium migrations resulting in exergonic isomerizations showed kinetic shifts of 10-17 kJ mol-1, stabilizing the C-8 σ-radicals. C-8 σ-radicals derived from N-1-protonated 9-methyladenine were also thermodynamically unstable and readily isomerized upon formation.

2.
Molecules ; 26(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198782

RESUMO

Fast and selective analytical methods help to ensure the chemical identity and desired purity of the prepared complexes before their medical application, and play an indispensable role in clinical practice. Mass spectrometry, despite some limitations, is an integral part of these methods. In the context of mass spectrometry, specific problems arise with the low ionization efficiency of particular analytes. Chemical derivatization was used as one of the most effective methods to improve the analyte's response and separation characteristics. The Schotten-Baumann reaction was successfully adapted for the derivatization of ESI hardly ionizable Re(VII) bis(catechol) oxochlorocomplex. Various alkyl and halogen p-substituted anilines as possible derivatization agents were tested. Unlike the starting complex, the reaction products were easily ionizable in electrospray, providing structurally characteristic molecular and fragment anions. DFT computer modeling, which proposed significant conformation changes of prepared complexes within their deprotonation, proved to have a close link to MS spectra. High-resolution MS and MS/MS measurements complemented with collision-induced dissociation experiments for detailed specification of prepared complexes' fragmentation pathways were used. The specified fragmentation schemes were analogous for all studied derivatives, with an exception for [Re(O)(Cat)2PIPA].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...