Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Insights Imaging ; 15(1): 106, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597979

RESUMO

OBJECTIVES: Cytogenetic abnormalities are predictors of poor prognosis in multiple myeloma (MM). This paper aims to build and validate a multiparametric conventional and functional whole-body MRI-based prediction model for cytogenetic risk classification in newly diagnosed MM. METHODS: Patients with newly diagnosed MM who underwent multiparametric conventional whole-body MRI, spinal dynamic contrast-enhanced (DCE-)MRI, spinal diffusion-weighted MRI (DWI) and had genetic analysis were retrospectively included (2011-2020/Ghent University Hospital/Belgium). Patients were stratified into standard versus intermediate/high cytogenetic risk groups. After segmentation, 303 MRI features were extracted. Univariate and model-based methods were evaluated for feature and model selection. Testing was performed using receiver operating characteristic (ROC) and precision-recall curves. Models comparing the performance for genetic risk classification of the entire MRI protocol and of all MRI sequences separately were evaluated, including all features. Four final models, including only the top three most predictive features, were evaluated. RESULTS: Thirty-one patients were enrolled (mean age 66 ± 7 years, 15 men, 13 intermediate-/high-risk genetics). None of the univariate models and none of the models with all features included achieved good performance. The best performing model with only the three most predictive features and including all MRI sequences reached a ROC-area-under-the-curve of 0.80 and precision-recall-area-under-the-curve of 0.79. The highest statistical performance was reached when all three MRI sequences were combined (conventional whole-body MRI + DCE-MRI + DWI). Conventional MRI always outperformed the other sequences. DCE-MRI always outperformed DWI, except for specificity. CONCLUSIONS: A multiparametric MRI-based model has a better performance in the noninvasive prediction of high-risk cytogenetics in newly diagnosed MM than conventional MRI alone. CRITICAL RELEVANCE STATEMENT: An elaborate multiparametric MRI-based model performs better than conventional MRI alone for the noninvasive prediction of high-risk cytogenetics in newly diagnosed multiple myeloma; this opens opportunities to assess genetic heterogeneity thus overcoming sampling bias. KEY POINTS: • Standard genetic techniques in multiple myeloma patients suffer from sampling bias due to tumoral heterogeneity. • Multiparametric MRI noninvasively predicts genetic risk in multiple myeloma. • Combined conventional anatomical MRI, DCE-MRI, and DWI had the highest statistical performance to predict genetic risk. • Conventional MRI alone always outperformed DCE-MRI and DWI separately to predict genetic risk. DCE-MRI alone always outperformed DWI separately, except for the parameter specificity to predict genetic risk. • This multiparametric MRI-based genetic risk prediction model opens opportunities to noninvasively assess genetic heterogeneity thereby overcoming sampling bias in predicting genetic risk in multiple myeloma.

2.
Haematologica ; 109(1): 256-271, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37470139

RESUMO

Multiple myeloma (MM) is the second most prevalent hematologic malignancy and is incurable because of the inevitable development of drug resistance. Methionine adenosyltransferase 2α (MAT2A) is the primary producer of the methyl donor S-adenosylmethionine (SAM) and several studies have documented MAT2A deregulation in different solid cancers. As the role of MAT2A in MM has not been investigated yet, the aim of this study was to clarify the potential role and underlying molecular mechanisms of MAT2A in MM, exploring new therapeutic options to overcome drug resistance. By analyzing publicly available gene expression profiling data, MAT2A was found to be more highly expressed in patient-derived myeloma cells than in normal bone marrow plasma cells. The expression of MAT2A correlated with an unfavorable prognosis in relapsed patients. MAT2A inhibition in MM cells led to a reduction in intracellular SAM levels, which resulted in impaired cell viability and proliferation, and induction of apoptosis. Further mechanistic investigation demonstrated that MAT2A inhibition inactivated the mTOR-4EBP1 pathway, accompanied by a decrease in protein synthesis. MAT2A targeting in vivo with the small molecule compound FIDAS-5 was able to significantly reduce tumor burden in the 5TGM1 model. Finally, we found that MAT2A inhibition can synergistically enhance the anti-MM effect of the standard-of-care agent bortezomib on both MM cell lines and primary human CD138+ MM cells. In summary, we demonstrate that MAT2A inhibition reduces MM cell proliferation and survival by inhibiting mTOR-mediated protein synthesis. Moreover, our findings suggest that the MAT2A inhibitor FIDAS-5 could be a novel compound to improve bortezomib-based treatment of MM.


Assuntos
Mieloma Múltiplo , S-Adenosilmetionina , Humanos , S-Adenosilmetionina/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Bortezomib/farmacologia , Prognóstico , Serina-Treonina Quinases TOR , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo
3.
Cell Mol Life Sci ; 80(9): 249, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578563

RESUMO

The glucocorticoid receptor (GR) is a crucial drug target in multiple myeloma as its activation with glucocorticoids effectively triggers myeloma cell death. However, as high-dose glucocorticoids are also associated with deleterious side effects, novel approaches are urgently needed to improve GR action in myeloma. Here, we reveal a functional crosstalk between GR and the mineralocorticoid receptor (MR) that plays a role in improved myeloma cell killing. We show that the GR agonist dexamethasone (Dex) downregulates MR levels in a GR-dependent way in myeloma cells. Co-treatment of Dex with the MR antagonist spironolactone (Spi) enhances Dex-induced cell killing in primary, newly diagnosed GC-sensitive myeloma cells. In a relapsed GC-resistant setting, Spi alone induces distinct myeloma cell killing. On a mechanistic level, we find that a GR-MR crosstalk likely arises from an endogenous interaction between GR and MR in myeloma cells. Quantitative dimerization assays show that Spi reduces Dex-induced GR-MR heterodimerization and completely abolishes Dex-induced MR-MR homodimerization, while leaving GR-GR homodimerization intact. Unbiased transcriptomics analyses reveal that c-myc and many of its target genes are downregulated most by combined Dex-Spi treatment. Proteomics analyses further identify that several metabolic hallmarks are modulated most by this combination treatment. Finally, we identified a subset of Dex-Spi downregulated genes and proteins that may predict prognosis in the CoMMpass myeloma patient cohort. Our study demonstrates that GR-MR crosstalk is therapeutically relevant in myeloma as it provides novel strategies for glucocorticoid-based dose-reduction.


Assuntos
Glucocorticoides , Mieloma Múltiplo , Humanos , Glucocorticoides/farmacologia , Receptores de Mineralocorticoides/genética , Dexametasona/farmacologia , Dexametasona/metabolismo , Dexametasona/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Espironolactona/uso terapêutico
4.
J Pathol ; 260(2): 112-123, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36807305

RESUMO

Multiple myeloma (MM) remains an incurable haematological malignancy despite substantial advances in therapy. Hypoxic bone marrow induces metabolic rewiring in MM cells contributing to survival and drug resistance. Therefore, targeting metabolic pathways may offer an alternative treatment option. In this study, we repurpose two FDA-approved drugs, syrosingopine and metformin. Syrosingopine was used as a dual inhibitor of monocarboxylate transporter 1 and 4 (MCT1/4) and metformin as an inhibitor for oxidative phosphorylation (OXPHOS). Anti-tumour effects were evaluated for single agents and in combination therapy. Survival and expression data for MCT1/MCT4 were obtained from the Total Therapy 2, Mulligan, and Multiple Myeloma Research Foundation cohorts. Cell death, viability, and proliferation were measured using Annexin V/7-AAD, CellTiterGlo, and BrdU, respectively. Metabolic effects were assessed using Seahorse Glycolytic Rate assays and LactateGlo assays. Differential protein expression was determined using western blotting, and the SUnSET method was implemented to quantify protein synthesis. Finally, the syngeneic 5T33MMvv model was used for in vivo analysis. High-level expression of MCT1 and MCT4 both correlated with a significantly lower overall survival of patients. Lactate production as well as MCT1/MCT4 expression were significantly upregulated in hypoxia, confirming the Warburg effect in MM. Dual inhibition of MCT1/4 with syrosingopine resulted in intracellular lactate accumulation and reduced cell viability and proliferation. However, only at higher doses (>10 µm) was syrosingopine able to induce cell death. By contrast, combination treatment of syrosingopine with metformin was highly cytotoxic for MM cell lines and primary patient samples and resulted in a suppression of both glycolysis and OXPHOS. Moreover, pathway analysis revealed an upregulation of the energy sensor p-AMPKα and more downstream a reduction in protein synthesis. Finally, the combination treatment resulted in a significant reduction in tumour burden in vivo. This study proposes an alternative combination treatment for MM and provides insight into intracellular effects. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Antineoplásicos , Metformina , Mieloma Múltiplo , Humanos , Metformina/farmacologia , Mieloma Múltiplo/metabolismo , Antineoplásicos/farmacologia , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Linhagem Celular Tumoral
5.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36650020

RESUMO

BACKGROUND: Immunotherapy emerged as a promising treatment option for multiple myeloma (MM) patients. However, therapeutic efficacy can be hampered by the presence of an immunosuppressive bone marrow microenvironment including myeloid cells. S100A9 was previously identified as a key regulator of myeloid cell accumulation and suppressive activity. Tasquinimod, a small molecule inhibitor of S100A9, is currently in a phase Ib/IIa clinical trial in MM patients (NCT04405167). We aimed to gain more insights into its mechanisms of action both on the myeloma cells and the immune microenvironment. METHODS: We analyzed the effects of tasquinimod on MM cell viability, cell proliferation and downstream signaling pathways in vitro using RNA sequencing, real-time PCR, western blot analysis and multiparameter flow cytometry. Myeloid cells and T cells were cocultured at different ratios to assess tasquinimod-mediated immunomodulatory effects. The in vivo impact on immune cells (myeloid cell subsets, macrophages, dendritic cells), tumor load, survival and bone disease were elucidated using immunocompetent 5TMM models. RESULTS: Tasquinimod treatment significantly decreased myeloma cell proliferation and colony formation in vitro, associated with an inhibition of c-MYC and increased p27 expression. Tasquinimod-mediated targeting of the myeloid cell population resulted in increased T cell proliferation and functionality in vitro. Notably, short-term tasquinimod therapy of 5TMM mice significantly increased the total CD11b+ cells and shifted this population toward a more immunostimulatory state, which resulted in less myeloid-mediated immunosuppression and increased T cell activation ex vivo. Tasquinimod significantly reduced the tumor load and increased the trabecular bone volume, which resulted in prolonged overall survival of MM-bearing mice in vivo. CONCLUSION: Our study provides novel insights in the dual therapeutic effects of the immunomodulator tasquinimod and fosters its evaluation in combination therapy trials for MM patients.


Assuntos
Reabsorção Óssea , Mieloma Múltiplo , Quinolonas , Animais , Camundongos , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Proliferação de Células , Imunossupressores/farmacologia , Mieloma Múltiplo/patologia , Células Mieloides/metabolismo , Quinolonas/farmacologia , Quinolonas/uso terapêutico , Quinolonas/metabolismo , Microambiente Tumoral , Humanos
6.
J Pathol ; 259(1): 69-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36245401

RESUMO

While multi-drug combinations and continuous treatment have become standard for multiple myeloma, the disease remains incurable. Repurposing drugs that are currently used for other indications could provide a novel approach to improve the therapeutic efficacy of standard multiple myeloma treatments. Here, we assessed the anti-tumor effects of cardiac drugs called ß-blockers as a single agent and in combination with commonly used anti-myeloma therapies. Expression of the ß2 -adrenergic receptor correlated with poor survival outcomes in patients with multiple myeloma. Targeting the ß2 -adrenergic receptor (ß2 AR) using either selective or non-selective ß-blockers reduced multiple myeloma cell viability, and induced apoptosis and autophagy. Blockade of the ß2 AR modulated cancer cell metabolism by reducing the mitochondrial respiration as well as the glycolytic activity. These effects were not observed by blockade of ß1 -adrenergic receptors. Combining ß2 AR blockade with the chemotherapy drug melphalan or the proteasome inhibitor bortezomib significantly increased apoptosis in multiple myeloma cells. These data identify the therapeutic potential of ß2 AR-blockers as a complementary or additive approach in multiple myeloma treatment and support the future clinical evaluation of non-selective ß-blockers in a randomized controlled trial. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 1/uso terapêutico , Transdução de Sinais , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Apoptose
7.
Front Cell Dev Biol ; 10: 879057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757005

RESUMO

Multiple myeloma (MM) is an incurable clonal plasma cell malignancy. Subsets of patients have high-risk features linked with dismal outcome. Therefore, the need for effective therapeutic options remains high. Here, we used bio-informatic tools to identify novel targets involved in DNA repair and epigenetics and which are associated with high-risk myeloma. The prognostic significance of the target genes was analyzed using publicly available gene expression data of MM patients (TT2/3 and HM cohorts). Hence, protein arginine methyltransferase 5 (PRMT5) was identified as a promising target. Druggability was assessed in OPM2, JJN3, AMO1 and XG7 human myeloma cell lines using the PRMT5-inhibitor EPZ015938. EPZ015938 strongly reduced the total symmetric-dimethyl arginine levels in all cell lines and lead to decreased cellular growth, supported by cell line dependent changes in cell cycle distribution. At later time points, apoptosis occurred, as evidenced by increased AnnexinV-positivity and cleavage of PARP and caspases. Transcriptome analysis revealed a role for PRMT5 in regulating alternative splicing, nonsense-mediated decay, DNA repair and PI3K/mTOR-signaling, irrespective of the cell line type. PRMT5 inhibition reduced the expression of upstream DNA repair kinases ATM and ATR, which may in part explain our observation that EPZ015938 and the DNA-alkylating agent, melphalan, have combinatory effects. Of interest, using a low-dose of mTOR-inhibitor, we observed that cell viability was partially rescued from the effects of EPZ015938, indicating a role for mTOR-related pathways in the anti-myeloma activity of EPZ015938. Moreover, PRMT5 was shown to be involved in splicing regulation of MMSET and SLAMF7, known genes of importance in MM disease. As such, we broaden the understanding of the exact role of PRMT5 in MM disease and further underline its use as a possible therapeutic target.

8.
Cancer Lett ; 535: 215649, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35315341

RESUMO

Multiple myeloma (MM) cells derive proliferative signals from the bone marrow (BM) microenvironment via exosomal crosstalk. Therapeutic strategies targeting this crosstalk are still lacking. Bortezomib resistance in MM cells is linked to elevated expression of xCT (the subunit of system Xc-). Extracellular glutamate released by system Xc- can bind to glutamate metabotropic receptor (GRM) 3, thereby upregulating Rab27-dependent vesicular trafficking. Since Rab27 is also involved in exosome biogenesis, we aimed to investigate the role of system Xc- in exosomal communication between BM stromal cells (BMSCs) and MM cells. We observed that expression of xCT and GRMs was increased after bortezomib treatment in both BMSCs and MM cells. Secretion of glutamate and exosomes was simultaneously enhanced which could be countered by inhibition of system Xc- or GRMs. Moreover, glutamate supplementation increased exosome secretion by increasing expression of Alix, TSG101, Rab27a/b and VAMP7. Importantly, the system Xc- inhibitor sulfasalazine reduced BMSC-induced resistance to bortezomib in MM cells in vitro and enhanced its anti-MM effects in vivo. These findings suggest that system Xc- plays an important role within the BM and could be a potential target in MM.


Assuntos
Exossomos , Mieloma Múltiplo , Apoptose , Medula Óssea/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Exossomos/metabolismo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Microambiente Tumoral
9.
J Exp Clin Cancer Res ; 41(1): 45, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105345

RESUMO

BACKGROUND: Multiple myeloma (MM) remains an incurable cancer despite advances in therapy. Therefore, the search for new targets is still essential to uncover potential treatment strategies. Metabolic changes, induced by the hypoxic bone marrow, contribute to both MM cell survival and drug resistance. Pyrroline-5-carboxylate reductase 1 and 2 (PYCR1 and PYCR2) are two mitochondrial enzymes that facilitate the last step in the glutamine-to-proline conversion. Overexpression of PYCR1 is involved in progression of several cancers, however, its' role in hematological cancers is unknown. In this study, we investigated whether PYCR affects MM viability, proliferation and response to bortezomib. METHODS: Correlation of PYCR1/2 with overall survival was investigated in the MMRF CoMMpass trial (653 patients). OPM-2 and RPMI-8226 MM cell lines were used to perform in vitro experiments. RPMI-8226 cells were supplemented with 13C-glutamine for 48 h in both normoxia and hypoxia (< 1% O2, by chamber) to perform a tracer study. PYCR1 was inhibited by siRNA or the small molecule inhibitor pargyline. Apoptosis was measured using Annexin V and 7-AAD staining, viability by CellTiterGlo assay and proliferation by BrdU incorporation. Differential protein expression was evaluated using Western Blot. The SUnSET method was used to measure protein synthesis. All in vitro experiments were performed in hypoxic conditions. RESULTS: We found that PYCR1 and PYCR2 mRNA expression correlated with an inferior overall survival. MM cells from relapsed/refractory patients express significantly higher levels of PYCR1 mRNA. In line with the strong expression of PYCR1, we performed a tracer study in RPMI-8226 cells, which revealed an increased conversion of 13C-glutamine to proline in hypoxia. PYCR1 inhibition reduced MM viability and proliferation and increased apoptosis. Mechanistically, we found that PYCR1 silencing reduced protein levels of p-PRAS40, p-mTOR, p-p70, p-S6, p-4EBP1 and p-eIF4E levels, suggesting a decrease in protein synthesis, which we also confirmed in vitro. Pargyline and siPYCR1 increased bortezomib-mediated apoptosis. Finally, combination therapy of pargyline with bortezomib reduced viability in CD138+ MM cells and reduced tumor burden in the murine 5TGM1 model compared to single agents. CONCLUSIONS: This study identifies PYCR1 as a novel target in bortezomib-based combination therapies for MM.


Assuntos
Antineoplásicos/uso terapêutico , Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Inibidores da Síntese de Proteínas/uso terapêutico , Pirrolina Carboxilato Redutases/uso terapêutico , Animais , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Proliferação de Células , Humanos , Camundongos , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Inibidores da Síntese de Proteínas/farmacologia , Pirrolina Carboxilato Redutases/farmacologia , Análise de Sobrevida
10.
Eur J Haematol ; 108(5): 369-378, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35030282

RESUMO

INTRODUCTION: Early-stage chronic lymphocytic leukemia (CLL) challenges specialized management and follow-up. METHODS: We developed and validated a prognostic index to identify newly diagnosed patients without need of treatment (CLL-WONT) by a training/validation approach using data on 4708 patients. Composite scores derived from weighted hazards by multivariable analysis defined CLL-WONT risk groups. RESULTS: Age (>65 years: 1 point), Binet stage (B: 2 points), lactate dehydrogenase (LDH) (>205 U/L: 1 point), absolute lymphocyte count (15-30 × 109 /L: 1 point; >30 × 109 /L; 2 points), ß2-microglobulin (>4 mg/L: 1 point), IGHV mutation status (unmutated: 1 point), and 11q or 17p deletion (1 point) were independently associated with shorter time to first treatment (TTFT). Low-risk patients demonstrated 5-year TTFT of 2% by internal validation, but 7-19% by external validation. Including all patients with complete scores, the 5-year TTFT was 10% for the 756 (39%) CLL-WONT low-risk patients, and the 704 (37%) patients who were both CLL-WONT and CLL-IPI low risk demonstrated even lower 5-year TTFT (8%). CONCLUSION: We have adopted the CLL-WONT at an institution covering 1 800 000 individuals to allow patients with both low-risk CLL-WONT and CLL-IPI to be managed by primary healthcare providers, thereby prioritizing specialized hematology services for patients in dire need.


Assuntos
Leucemia Linfocítica Crônica de Células B , Idoso , Aberrações Cromossômicas , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/terapia , Mutação , Prognóstico , Fatores de Risco
11.
Acta Clin Belg ; 77(2): 410-415, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33433292

RESUMO

A 61-year-old female presented with pancytopenia with a hemoglobin of 7.6 g/dL, platelet count of 26.000/µL and neutrophil count of 525/µL. Bone marrow aspirate showed moderately cellular marrow with a dysplastic erythroid lineage and poor megakaryo- and granulopoiesis without excessive blast count. Trephine biopsy revealed profoundly hypocellular marrow with rare hematopoietic elements. Conventional karyotyping was normal and next generation sequencing revealed no mutations. These findings were compatible with transfusion dependent, non-severe aplastic anaemia (AA) with grade 3 thrombopenia and neutropenia. However, diagnostic workup including CT thorax revealed unexpected sclerotic bone conversions in the spine. Additional whole body SPECT with 99mTc-HDP showed multiple bone lesions in the cervical, thoracic and lumbar spine. CT guided biopsy of D12 surprisingly revealed normal trilineage hematopoiesis. These results were very discrepant from the profoundly hypocellular marrow from the trephine biopsy. It is known that in AA residual hyperactive foci of hematopoiesis can persist; so called 'hot pockets'. MRI is the preferred imaging technique in AA; in most cases a homogeneous fatty bone marrow is found, though some patients present with a heterogeneous marrow with foci of decreased intensity, corresponding with residual foci of hematopoiesis. Imaging studies with PET-CT and PET-MRI confirm these different patterns with respectively homogeneous hypometabolism and hypometabolism with focal hyperproliferation. However, there is no previous literature on the aspect of this focal hematopoiesis on computed tomography. This is the first description of a 'hot pocket' manifesting as a sclerotic bone lesion on CT.


Assuntos
Anemia Aplástica , Neoplasias Ósseas , Pancitopenia , Anemia Aplástica/diagnóstico , Anemia Aplástica/patologia , Medula Óssea/patologia , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
12.
Oncoimmunology ; 10(1): 2000699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777918

RESUMO

Multiple myeloma (MM) is a hematological malignancy characterized by the presence of clonal plasma cells in the bone marrow niche. Despite significant therapeutic advances, MM remains incurable for the majority of patients. Targeted radionuclide therapy (TRNT) has emerged as a promising treatment option to eradicate residual cancer cells. In this study, we developed and characterized single-domain antibodies (sdAbs) against the MM-antigen CS1 and evaluated its therapeutic potential in MM using TRNT. We first validated CS1 as potential target for TRNT. CS1 is expressed in normal and malignant plasma cells in different disease stages including progression and relapse. It is expressed in dormant as well as proliferating MM cells, while low expression could be observed in environmental cells. Biodistribution studies demonstrated the specific uptake of anti-CS1 sdAbs in tissues of 5TMM cell infiltration including bone, spleen and liver. TRNT using anti-CS1 sdAbs labeled with actinium-225 significantly prolonged survival of syngeneic, immunocompetent 5T33MM mice. In addition, we observed an increase in CD8+ T-cells and more overall PD-L1 expression on immune and non-immune cells, implying an interferon gamma signature using actinium-225 labeled CS1-directed sdAbs. In this proof-of-principle study, we highlight, for the first time, the therapeutic potential and immunomodulating effects of anti-CS1 radionuclide therapy to target residual MM cells.


Assuntos
Mieloma Múltiplo , Anticorpos de Domínio Único , Actínio , Animais , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Humanos , Camundongos , Mieloma Múltiplo/terapia , Família de Moléculas de Sinalização da Ativação Linfocitária , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
13.
BMC Cancer ; 21(1): 993, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488662

RESUMO

BACKGROUND: Selinexor is an oral, selective nuclear export inhibitor. STORM was a phase 2b, single-arm, open-label, multicenter trial of selinexor with low dose dexamethasone in patients with penta-exposed relapsed/refractory multiple myeloma (RRMM) that met its primary endpoint, with overall response of 26% (95% confidence interval [CI], 19 to 35%). Health-related quality of life (HRQoL) was a secondary endpoint measured using the Functional Assessment of Cancer Therapy - Multiple Myeloma (FACT-MM). This study examines impact of selinexor treatment on HRQoL of patients treated in STORM and reports two approaches to calculate minimal clinically important differences for the FACT-MM. METHODS: FACT-MM data were collected at baseline, on day 1 of each 4-week treatment cycle, and at end of treatment (EOT). Changes from baseline were analyzed for the FACT-MM total score, FACT-trial outcome index (TOI), FACT-General (FACT-G), and the MM-specific domain using mixed-effects regression models. Two approaches for evaluating minimal clinically important differences were explored: the first defined as 10% of the instrument range, and the second based on estimated mean baseline differences between Eastern Cooperative Oncology Group performance status (ECOG PS) scores. Post-hoc difference analysis compared change in scores from baseline to EOT for treatment responders and non-responders. RESULTS: Eighty patients were included in the analysis; the mean number of prior therapies was 7.9 (standard deviation [SD] 3.1), and mean duration of myeloma was 7.6 years (SD 3.4). Each exploratory minimal clinically important difference threshold yielded consistent results whereby most patients did not experience HRQoL decline during the first six cycles of treatment (range: 53.9 to 75.7% for the first approach; range: 52.6 to 72.9% for the second). Treatment responders experienced less decline in HRQoL from baseline to EOT than non-responders, which was significant for the FACT-G, but not for other scores. CONCLUSION: The majority of patients did not experience decline in HRQoL based on minimal clinically important differences during early cycles of treatment with selinexor and dexamethasone in the STORM trial. An anchor-based approach utilizing patient-level data (ECOG PS score) to define minimal clinically important differences for the FACT-MM gave consistent results with a distribution-based approach. TRIAL REGISTRATION: This trial was registered on ClinicalTrials.gov under the trial-ID NCT02336815 on January 8, 2015.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Qualidade de Vida , Adulto , Idoso , Idoso de 80 Anos ou mais , Dexametasona/administração & dosagem , Feminino , Seguimentos , Humanos , Hidrazinas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/patologia , Prognóstico , Taxa de Sobrevida , Triazóis/administração & dosagem
14.
Br J Haematol ; 194(1): 120-131, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34036560

RESUMO

Treatment benefit in multiple myeloma (MM) patients with high-risk cytogenetics remains suboptimal. The phase 3 ICARIA-MM trial (NCT02990338) showed that isatuximab plus pomalidomide-dexamethasone prolongs median progression-free survival (mPFS) in patients with relapsed/refractory MM (RRMM). This subgroup analysis of ICARIA-MM compared the benefit of isatuximab in high-risk [defined by the presence of del(17p), t(4;14) or t(14;16)] versus standard-risk patients. The efficacy of isatuximab in patients with gain(1q21) abnormality was also assessed in a retrospective subgroup analysis. In ICARIA-MM, 307 patients received isatuximab-pomalidomide-dexamethasone (n = 154) or pomalidomide-dexamethasone (n = 153). Isatuximab (10 mg/kg intravenously) was given weekly in the first 28-day cycle, and every other week thereafter. Standard pomalidomide-dexamethasone doses were given. Isatuximab-pomalidomide-dexamethasone improved mPFS (7·5 vs 3·7 months; HR, 0·66; 95% CI, 0·33-1·28) and overall response rate (ORR, 50·0% vs 16·7%) in high-risk patients. In patients with isolated gain(1q21), isatuximab addition improved mPFS (11·2 vs 4·6 months; HR, 0·50; 95% CI, 0·28-0·88) and ORR (53·6% vs 27·6%). More grade ≥3 adverse events occurred in high-risk patients receiving isatuximab (95·7%) versus the control group (67·6%); however, isatuximab did not increase events leading to discontinuation or treatment-related mortality. Isatuximab-pomalidomide-dexamethasone provides a consistent benefit over pomalidomide-dexamethasone treatment in RRMM patients regardless of cytogenetic risk.


Assuntos
Ensaios Clínicos Fase III como Assunto/estatística & dados numéricos , Mieloma Múltiplo/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Terapia de Salvação , Cariótipo Anormal , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Cromossomos Humanos Par 1/genética , Dexametasona/administração & dosagem , Neutropenia Febril/induzido quimicamente , Feminino , Humanos , Fatores Imunológicos/administração & dosagem , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Mieloma Múltiplo/mortalidade , Proteínas do Mieloma/análise , Pneumonia/induzido quimicamente , Recidiva , Risco , Talidomida/administração & dosagem , Talidomida/análogos & derivados , Trissomia
15.
Blood Adv ; 5(9): 2325-2338, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33938943

RESUMO

Multiple myeloma (MM) is an (epi)genetic highly heterogeneous plasma cell malignancy that remains mostly incurable. Deregulated expression and/or genetic defects in epigenetic-modifying enzymes contribute to high-risk disease and MM progression. Overexpression of the histone methyltransferase G9a was reported in several cancers, including MM, correlating with disease progression, metastasis, and poor prognosis. However, the exact role of G9a and its interaction partner G9a-like protein (GLP) in MM biology and the underlying mechanisms of action remain poorly understood. Here, we report that high G9a RNA levels are associated with a worse disease outcome in newly diagnosed and relapsed MM patients. G9a/GLP targeting using the specific G9a/GLP inhibitors BIX01294 and UNC0638 induces a G1-phase arrest and apoptosis in MM cell lines and reduces primary MM cell viability. Mechanistic studies revealed that G9a/GLP targeting promotes autophagy-associated apoptosis by inactivating the mTOR/4EBP1 pathway and reducing c-MYC levels. Moreover, genes deregulated by G9a/GLP targeting are associated with repressive histone marks. G9a/GLP targeting sensitizes MM cells to the proteasome inhibitors (PIs) bortezomib and carfilzomib, by (further) reducing mTOR signaling and c-MYC levels and activating p-38 and SAPK/JNK signaling. Therapeutic treatment of 5TGM1 mice with BIX01294 delayed in vivo MM tumor growth, and cotreatment with bortezomib resulted in a further reduction in tumor burden and a significantly prolonged survival. In conclusion, we provide evidence that the histone methyltransferases G9a/GLP support MM cell growth and survival by blocking basal autophagy and sustaining high c-MYC levels. G9a/GLP targeting represents a promising strategy to improve PI-based treatment in patients with high G9a/GLP levels.


Assuntos
Histona-Lisina N-Metiltransferase , Mieloma Múltiplo , Animais , Apoptose , Autofagia , Morte Celular , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Inibidores de Proteassoma/farmacologia
16.
Clin Lymphoma Myeloma Leuk ; 21(1): 46-54.e4, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33485428

RESUMO

BACKGROUND: Daratumumab is approved for relapsed or refractory multiple myeloma (RRMM) as monotherapy or in combination regimens. We evaluated daratumumab plus cetrelimab, a programmed death receptor-1 inhibitor, in RRMM. PATIENTS AND METHODS: This open-label, multiphase study enrolled adults with RRMM with ≥ 3 prior lines of therapy. Part 1 was a safety run-in phase examining dose-limiting toxicities of daratumumab (16 mg/kg intravenously weekly for cycles 1-2, biweekly for cycles 3-6, and monthly thereafter) plus cetrelimab (240 mg intravenously biweekly, all cycles). In Parts 2 and 3, patients were to be randomized to daratumumab with or without cetrelimab (same schedule as Part 1). Endpoints included safety, overall response rate, pharmacokinetics, and biomarker analyses. RESULTS: Nine patients received daratumumab plus cetrelimab in the safety run-in, and 1 received daratumumab in Part 2 before administrative study termination following a data monitoring committee's global recommendation to stop any trial including daratumumab combined with inhibitors of programmed death receptor-1 or its ligand (programmed death-ligand 1). The median follow-up times were 6.7 months (safety run-in) and 0.3 months (Part 2). No dose-limiting toxicities occurred. All 10 patients had ≥ 1 treatment-emergent adverse event; 7 patients had grade 3 to 4 treatment-emergent adverse events, and none led to treatment discontinuation or death. In the safety run-in, 7 (77.7%) patients had ≥ 1 infusion-related reaction (most grade 1-2), and 1 had a grade 2 immune-mediated reaction. Among safety run-in patients, the overall response rate was 44.4%. CONCLUSIONS: No new safety concerns were identified for daratumumab plus cetrelimab in RRMM. The short study duration and small population limit complete analysis of this combination.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Adulto , Idoso , Anticorpos Monoclonais/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/mortalidade , Análise de Sobrevida
17.
Clin Case Rep ; 8(12): 3070-3074, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33363882

RESUMO

This report highlights the importance of integrating clinical, radiological, genetic, and pathological laboratory findings to make a correct diagnosis especially with challenging and rare entities.

18.
Blood Cancer J ; 9(12): 87, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740676

RESUMO

Diffuse large B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) are among the most aggressive B cell non-Hodgkin lymphomas. Maternal embryonic leucine zipper kinase (MELK) plays a role in cancer cell cycle progression and is associated with poor prognosis in several cancer cell types. In this study, the role of MELK in DLBCL and MCL and the therapeutic potential of MELK targeting is evaluated. MELK is highly expressed in DLBCL and MCL patient samples, correlating with a worse clinical outcome in DLBCL. Targeting MELK, using the small molecule OTSSP167, impaired cell growth and survival and induced caspase-mediated apoptosis in the lymphoma cells. Western blot analysis revealed that MELK targeting decreased the phosphorylation of FOXM1 and the protein levels of EZH2 and several mitotic regulators, such as Cdc25B, cyclin B1, Plk-1, and Aurora kinases. In addition, OTSSP167 also sensitized the lymphoma cells to the clinically relevant Bcl-2 inhibitor venetoclax by strongly reducing Mcl1 levels. Finally, OTSSP167 treatment of A20-inoculated mice resulted in a significant prolonged survival. In conclusion, targeting MELK with OTSSP167 induced strong anti-lymphoma activity both in vitro and in vivo. These findings suggest that MELK could be a potential new target in these aggressive B cell malignancies.


Assuntos
Biomarcadores Tumorais , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma de Célula do Manto/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma de Célula do Manto/diagnóstico , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Camundongos , Terapia de Alvo Molecular , Naftiridinas/farmacologia , Naftiridinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancers (Basel) ; 11(12)2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756922

RESUMO

Multiple myeloma (MM) is well-known for the development of drug resistance, leading to relapse. Therefore, finding novel treatment strategies remains necessary. By performing a lipidomics assay on MM patient plasma, we aimed to identify new targets. We observed a dysregulation in the sphingolipid metabolism, with the upregulation of several ceramides and downregulation of sphingomyelin. This imbalance suggests an increase in sphingomyelinase, the enzyme responsible for hydrolyzing sphingomyelin into ceramide. We confirmed the upregulation of acid sphingomyelinase (ASM) in primary MM cells. Furthermore, we observed an increase in ASM expression in MM cell lines treated with melphalan or bortezomib, as well as in their exosomes. Exosomes high in ASM content were able to transfer the drug-resistant phenotype to chemosensitive cells, hereby suggesting a tumor-protective role for ASM. Finally, inhibition of ASM by amitriptyline improved drug sensitivity in MM cell lines and primary MM cells. In summary, this study is the first to analyze differences in plasma lipid composition of MM patients and match the observed differences to an upregulation of ASM. Moreover, we demonstrate that amitriptyline is able to inhibit ASM and increase sensitivity to anti-myeloma drugs. This study, therefore, provides a rational to include ASM-targeting-drugs in combination strategies in myeloma patients.

20.
Front Genet ; 10: 740, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475039

RESUMO

Multiple myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal plasma cells in the bone marrow. In normal plasma cell development, cells undergo programmed DNA breaks and translocations, a process necessary for generation of a wide repertoire of antigen-specific antibodies. This process also makes them vulnerable for the acquisition of chromosomal defects. Well-known examples of these aberrations, already seen at time of MM diagnosis, are hyperdiploidy or the translocations involving the immunoglobulin heavy chain. Over the recent years, however, novel aspects concerning genomic instability and its role in tumor development, disease progression and nascence of refractory disease were identified. As such, genomic instability is becoming a very relevant research topic with the potential identification of novel disease pathways. In this review, we aim to describe recent studies involving murine MM models focusing on the deregulation of processes implicated in genomic instability and their clinical impact. More specifically, we will discuss chromosomal instability, DNA damage and repair responses, development of drug resistance, and recent insights into the study of clonal hierarchy using different murine MM models. Lastly, we will discuss the importance and the use of murine MM models in the pre-clinical evaluation of promising novel therapeutic agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...