Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 10(18): 10731-10739, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35492933

RESUMO

In this work, we consider the electronic and optical properties of chemically functionalized InN monolayers with F and Cl atoms (i.e., F-InN-F, F-InN-Cl, Cl-InN-F, Cl-InN-Cl monolayers) using first-principles calculations. The adsorption of the F and Cl atoms on the InN monolayer is determined to be chemically stable and the F-InN-F monolayer is most likely to occur. Our calculations show that the chemical functionalization with Cl and F atoms not only breaks the planar structure of InN monolayer but also increases its band gap. By using both Perdew, Burke, and Ernzerhof (PBE) and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functionals, all four models of chemically functionalized InN monolayers are found to be semiconductors with direct energy gaps and these gaps depend on the constituent species. When the spin-orbit coupling (SOC) was included, the energy gap of these monolayers was reduced and an energy splitting was found at the Γ-point in the valence band. Chemically functionalized InN monolayers can absorb light in a wide region, especially the F-InN-F and Cl-InN-F monolayers have a strong ability to absorb the visible light. Our findings reveal that the chemically functionalized InN monolayers have potential applications in next-generation optoelectronic devices.

2.
RSC Adv ; 10(19): 11156-11164, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35495300

RESUMO

The data on the electronic structure and optical properties of bromide K0.5Rb0.5Pb2Br5 achieved by first-principle calculations and verified by X-ray spectroscopy measurements are reported. The kinetic energy, the Coulomb potential induced by the exchange hole, spin-orbital effects, and Coulomb repulsion were taken into account by applying the Tran and Blaha modified Becke-Johnson function (TB-mBJ), Hubbard U parameter, and spin-orbital coupling effect (SOC) in the TB-mBJ + U + SOC technique. The band gap was for the first time defined to be 3.23 eV. The partial density of state (PDOS) curves of K0.5Rb0.5Pb2Br5 agree well with XES K Ll and Br Kß2, and XPS spectra. The valence band (VB) is characterized by the Pb-5d3/2 and Pb-5d5/2 sub-states locating in the vicinities of -20 eV and -18 eV, respectively. The VB middle part is mainly formed by K-3p, Rb-4p and Br-4s states, in which the separation of Rb-4p3/2 and Rb-4p1/2 was also observed. The strong hybridization of Br-p and Pb-s/p states near -6.5 eV reveals a major covalent part in the Br-Pb bonding. With a large band gap of 3.23 eV, and the remarkably high possibility of inter-band transition in energy ranges of 4-7 eV, and 10-12 eV, the bromide K0.5Rb0.5Pb2Br5 is expected to be a very promising active host material for core valence luminescence and mid-infrared rare-earth doped laser materials. The anisotropy of optical properties in K0.5Rb0.5Pb2Br5 is not significant, and it occurs at the extrema in the optical spectra. The absorption coefficient α(ω) is in the order of magnitude of 106 cm-1 for an energy range of 5-25 eV.

3.
RSC Adv ; 10(17): 9824-9832, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498594

RESUMO

The formation of van der Waals heterostructures (vdWHs) have recently emerged as promising structures to make a variety of novel nanoelectronic and optoelectronic devices. Here, in this work, we investigate the structural, electronic and optical features of ZnO/ZrSSe vdWHs for different stacking patterns of ZnO/SeZrS and ZnO/SZrSe by employing first-principles calculations. Binding energy and ab initio molecular dynamics calculations are also employed to confirm the structural and thermal stability of the ZnO/ZrSSe vdWHs for both models. We find that in both stacking models, the ZnO and ZrSSe layers are bonded via weak vdW forces, leading to easy exfoliation of the layers. More interestingly, both the ZnO/SeZrS and ZnO/SZrSe vdWHs posses type-II band alignment, making them promising candidates for the use of photovoltaic devices because the photogenerated electrons-holes are separated at the interface. The ZnO/ZrSSe vdWHs for both models possess high performance absorption in the visible and near-infrared regions, revealing their use for acquiring efficient photocatalysts. Moreover, the band gap values and band alignments of the ZnO/ZrSSe for both models can be adjusted by an electric field as well as vertical strains. There is a transformation from semiconductor to metal under a negative electric field and tensile vertical strain. These findings demonstrate that ZnO/ZrSSe vdWHs are a promising option for optoelectronic and nanoelectronic applications.

4.
RSC Adv ; 10(45): 26843-26852, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35515775

RESUMO

We report the relation between the optical properties and electronic structure of lithium thiogallate (LiGaS2) by performing XPS and XES measurements and theoretical calculations. According to the XPS measurements, the LiGaS2 crystals grown by the Bridgman-Stockbarger method possess promising optical qualities, low hygroscopicity and high stability upon middle-energy Ar+-ion irradiation. The difference in the LiGaS2 band gaps obtained by theoretical calculations and experimental measurements was, for the first time, reduced down to 0.27 eV by applying the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential where the Coulomb repulsion was considered by introducing Hubbard parameter, U. The TB-mBJ+U method also reproduces the XPS spectrum well. The TB-mBJ+U band-structure calculations of LiGaS2 are found to be in good agreement with the XPS and XES experimental data. The accurate electronic structure of LiGaS2 allows further investigation of the optical properties. The relation between the photoluminescence of LiGaS2 and its electronic structure was revealed. Moreover, the theoretical results show the possibility of emissions at higher energy levels in LiGaS2, that has not been measured in experiments yet. Good phase-matching of LiGaS2 was expected to occur at energy levels of 5, 6, 6.2, 7, 7.2, and 8 eV.

5.
Phys Chem Chem Phys ; 21(46): 25849-25858, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31735947

RESUMO

van der Waals heterostructures can be effectively used to enhance the electronic and optical properties and extend the application range of two-dimensional materials. Here, we construct for the first time MoSeTe/X(OH)2 (X = Ca, Mg) heterostructures and investigate their electronic and optical properties as well as the relative orientation of these layers with respect to each other and the effects of an electric field. Our results show that in the MoSeTe/X(OH)2 heterostructures, the Janus MoSeTe monolayer is bonded to the X(OH)2 layer via weak van der Waals forces. Owing to different kinds of chalcogen Se and Te atoms in both sides of Janus MoSeTe, there exist two main stacking types of the MoSeTe/X(OH)2 heterostructures, that are MoSeTe-Se/X(OH)2 and MoSeTe-Te/X(OH)2 heterostructures. Interestingly, the Se- and Te-interface can induce straddling type-II and type-I band alignments. The MoSeTe-Se/X(OH)2 heterostructure exhibits a type-II band alignment, thus endowing it with a potential ability to separate photogenerated electrons and holes. Whereas, the MoSeTe-Te/Ca(OH)2 heterostructure displays a type-I band alignment, which may result in an ultrafast recombination between electrons and holes, making the MoSeTe-Te/Ca(OH)2 heterostructure a suitable material for optoelectronic applications. The MoSeTe/X(OH)2 heterostructures show an isotropic behavior in the low energy region while an anisotropic behaviour in the high photon energy region. The dielectric function of the MoSeTe-Te/Ca(OH)2 heterostructure is high at low photon energy relative to other heterostructures verifying it to have a good optical absorption. Furthermore, the band gap values and band alignment of the MoSeTe/X(OH)2 heterostructures can be modulated by applying an electric field, which induces semiconductor-to-metal and type-I(II) to type-II(I) band alignment. These results demonstrate that the MoSeTe/X(OH)2 heterostructures are promising candidates for optoelectronic and photovoltaic nanodevices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...