Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Methods ; 3(12): 100669, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38086386

RESUMO

We created a generalizable pipeline for antibiotic-resistance-gene-free plasmid (ARGFP)-based cloning using a dual auxotrophic- and essential-gene-based selection strategy. We use auxotrophic selection to construct plasmids in engineered E. coli DH10B cloning strains and both auxotrophic- and essential-gene-based selection to (1) select for recombinant strains and (2) maintain a plasmid in E. coli Nissle 1917, a common chassis for engineered probiotic applications, and E. coli MG1655, the laboratory "wild-type" E. coli strain. We show that our approach has comparable efficiency to that of antibiotic-resistance-gene-based cloning. We also show that the double-knockout Nissle and MG1655 strains are simple to transform with plasmids of interest. Notably, we show that the engineered Nissle strains are amenable to long-term plasmid maintenance in repeated culturing as well as in the mouse gut, demonstrating the potential for broad applications while minimizing the risk of antibiotic resistance spread via horizontal gene transfer.


Assuntos
Antibacterianos , Escherichia coli , Animais , Camundongos , Antibacterianos/farmacologia , Escherichia coli/genética , Plasmídeos/genética , Resistência Microbiana a Medicamentos/genética , Clonagem Molecular
2.
Biomaterials ; 301: 122240, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37480758

RESUMO

Controlling traumatic bleeding from damaged internal organs while effectively sealing the wound is critical for saving the lives of patients. Existing bioadhesives suffer from blood incompatibility, insufficient adhesion to wet surfaces, weak mechanical properties, and complex application procedures. Here, we engineered a ready-to-use hemostatic bioadhesive with ultra-strengthened mechanical properties and fatigue resistance, robust adhesion to wet tissues within a few seconds of gentle pressing, deformability to accommodate physiological function and action, and the ability to stop bleeding efficiently. The engineered hydrogel, which demonstrated high elasticity (>900%) and toughness (>4600 kJ/m3), was formed by fine-tuning a series of molecular interactions and crosslinking mechanisms involving N-hydroxysuccinimide (NHS) conjugated alginate (Alg-NHS), poly (ethylene glycol) diacrylate (PEGDA), tannic acid (TA), and Fe3+ ions. Dual adhesive moieties including mussel-inspired pyrogallol/catechol and NHS synergistically enhanced wet tissue adhesion (>400 kPa in a wound closure test). In conjunction with physical sealing, the high affinity of TA/Fe3+ for blood could further augment hemostasis. The engineered bioadhesive demonstrated excellent in vitro and in vivo biocompatibility as well as improved hemostatic efficacy as compared to commercial Surgicel®. Overall, the hydrogel design strategy described herein holds great promise for overcoming existing obstacles impeding clinical translation of engineered hemostatic bioadhesives.


Assuntos
Hemostáticos , Humanos , Hemostáticos/farmacologia , Aderências Teciduais , Fenômenos Físicos , Hidrogéis , Hemostasia
3.
Proc Natl Acad Sci U S A ; 120(1): e2213154120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574681

RESUMO

Microbes naturally coexist in complex, multistrain communities. However, extracting individual microbes from and specifically manipulating the composition of these consortia remain challenging. The sequence-specific nature of CRISPR guide RNAs can be leveraged to accurately differentiate microorganisms and facilitate the creation of tools that can achieve these tasks. We developed a computational program, ssCRISPR, which designs strain-specific CRISPR guide RNA sequences with user-specified target strains, protected strains, and guide RNA properties. We experimentally verify the accuracy of the strain specificity predictions in both Escherichia coli and Pseudomonas spp. and show that up to three nucleotide mismatches are often required to ensure perfect specificity. To demonstrate the functionality of ssCRISPR, we apply computationally designed CRISPR-Cas9 guide RNAs to two applications: the purification of specific microbes through one- and two-plasmid transformation workflows and the targeted removal of specific microbes using DNA-loaded liposomes. For strain purification, we utilize gRNAs designed to target and kill all microbes in a consortium except the specific microbe to be isolated. For strain elimination, we utilize gRNAs designed to target only the unwanted microbe while protecting all other strains in the community. ssCRISPR will be of use in diverse microbiota engineering applications.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes , Consórcios Microbianos , Plasmídeos/genética , RNA Guia de Sistemas CRISPR-Cas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...