Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 22, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167893

RESUMO

For complex and multi-layered clastic oil reservoir formations, modeling lithofacies and petrophysical parameters is essential for reservoir characterization, history matching, and uncertainty quantification. This study introduces a real oilfield case study that conducted high-resolution geostatistical modeling of 3D lithofacies and petrophysical properties for rapid and reliable history matching of the Luhais oil reservoir in southern Iraq. For capturing the reservoir's tidal depositional setting using data collected from 47 wells, the lithofacies distribution (sand, shaly sand, and shale) of a 3D geomodel was constructed using sequential indicator simulation (SISIM). Based on the lithofacies modeling results, 50 sets of porosity and permeability distributions were generated using sequential Gaussian simulation (SGSIM) to provide insight into the spatial geological uncertainty and stochastic history matching. For each rock type, distinct variograms were created in the 0° azimuth direction, representing the shoreface line. The standard deviation between every pair of spatial realizations justified the number of variograms employed. An upscaled version of the geomodel, incorporating the lithofacies, permeability, and porosity, was used to construct a reservoir-flow model capable of providing rapid, accurate, and reliable production history matching, including well and field production rates.

2.
ACS Omega ; 7(43): 39375-39395, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36340099

RESUMO

The Meyal oil field (MOF) is among the most important contributors to Pakistan's oil and gas industry. Northern Pakistan's Potwar Basin is located in the foreland and thrust bands of the Himalayan mountains. The current research aims to delineate the hydrocarbon potential, reservoir zone evaluation, and lithofacies identification through the utilization of seven conventional well logs (M-01, M-08, M-10, M-12, M-13P, and M-17). We employed the advanced unsupervised machine-learning method of self-organizing maps for lithofacies identification and the novel Quanti Elan model technique for comprehensive multimineral evaluation. The shale volume, porosity, permeability, and water saturation (petrophysical parameters) of six wells were evaluated to identify the reservoir potential and prospective reservoir zones. Well-logging data and self-organizing maps were used in this study to provide a less costly method for the objective and systematic identification of lithofacies. According to the SOM and Pickett plot analyses, the zone of interest is mostly made up of pure limestone oil zone, whereas the sandy and dolomitic behavior with a mixture of shale content shows non-reservoir oil-water and water zones. The reservoir has good porosity values that range from 0 to 18%, but there is a high water saturation of up to 45% in reservoir production zones. The presence of shale in the entire reservoir interval has a negative effect on the permeability value, but the petrophysical properties of the Meyal oil reservoir are good enough to permit hydrocarbon production. According to the petrophysical estimates, the Meyal oil field's Sakesar and Chorgali Formations are promising reservoirs, and new prospects for drilling wells in the southern and central portions of the eastern portion of the research area are recommended.

3.
Sci Rep ; 10(1): 18204, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097766

RESUMO

Residual Oil Zones (ROZs) become potential formations for Carbon Capture, Utilization, and Storage (CCUS). Although the growing attention in ROZs, there is a lack of studies to propose the fast tool for evaluating the performance of a CO2 injection process. In this paper, we introduce the application of artificial neural network (ANN) for predicting the oil recovery and CO2 storage capacity in ROZs. The uncertainties parameters, including the geological factors and well operations, were used for generating the training database. Then, a total of 351 numerical samples were simulated and created the Cumulative oil production, Cumulative CO2 storage, and Cumulative CO2 retained. The results indicated that the developed ANN model had an excellent prediction performance with a high correlation coefficient (R2) was over 0.98 on comparing with objective values, and the total root mean square error of less than 2%. Also, the accuracy and stability of ANN models were validated for five real ROZs in the Permian Basin. The predictive results were an excellent agreement between ANN predictions and field report data. These results indicated that the ANN model could predict the CO2 storage and oil recovery with high accuracy, and it can be applied as a robust tool to determine the feasibility in the early stage of CCUS in ROZs. Finally, the prospective application of the developed ANN model was assessed by optimization CO2-EOR and storage projects. The developed ANN models reduced the computational time for the optimization process in ROZs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...