Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(1): 319-327, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38127784

RESUMO

Progress in the synthetic biology field is driven by the development of new tools for synthetic circuit engineering. Traditionally, the focus has relied on protein-based designs. In recent years, the use of RNA-based tools has tremendously increased, due to their versatile functionality and applicability. A promising class of molecules is RNA aptamers, small, single-stranded RNA molecules that bind to a target molecule with high affinity and specificity. When targeting bacterial repressors, RNA aptamers allow one to add a new layer to an established protein-based regulation. In the present study, we selected an RNA aptamer binding the bacterial repressor DasR, preventing its binding to its operator sequence and activating DasR-controlled transcription in vivo. This was made possible only by the combination of an in vitro selection and subsequent in vivo screening. Next-generation sequencing of the selection process proved the importance of the in vivo screening for the discovery of aptamers functioning in the cell. Mutational and biochemical studies led to the identification of the minimal necessary binding motif. Taken together, the resulting combination of bacterial repressor and RNA aptamer enlarges the synthetic biology toolbox by adding a new level of regulation.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/metabolismo , Técnica de Seleção de Aptâmeros/métodos , RNA
2.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511294

RESUMO

An open research field in cellular regulation is the assumed crosstalk between RNAs, metabolic enzymes, and metabolites, also known as the REM hypothesis. High-throughput assays have produced extensive interactome data with metabolic enzymes frequently found as hits, but only a few examples have been biochemically validated, with deficits especially in prokaryotes. Therefore, we rationally selected nineteen Escherichia coli enzymes from such datasets and examined their ability to bind RNAs using two complementary methods, iCLIP and SELEX. Found interactions were validated by EMSA and other methods. For most of the candidates, we observed no RNA binding (12/19) or a rather unspecific binding (5/19). Two of the candidates, namely glutamate-5-kinase (ProB) and quinone oxidoreductase (QorA), displayed specific and previously unknown binding to distinct RNAs. We concentrated on the interaction of QorA to the mRNA of yffO, a grounded prophage gene, which could be validated by EMSA and MST. Because the physiological function of both partners is not known, the biological relevance of this interaction remains elusive. Furthermore, we found novel RNA targets for the MS2 phage coat protein that served us as control. Our results indicate that RNA binding of metabolic enzymes in procaryotes is less frequent than suggested by the results of high-throughput studies, but does occur.


Assuntos
Escherichia coli , Escherichia coli/genética , Prevalência
3.
Front Microbiol ; 10: 3121, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117084

RESUMO

In contrast to transcriptional regulation, post-transcriptional regulation and the role of small non-coding RNAs (sRNAs) in streptomycetes are not well studied. Here, we focus on the highly conserved sRNA scr5239 in Streptomyces coelicolor. A proteomics approach revealed that the sRNA regulates several metabolic enzymes, among them phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of the central carbon metabolism. The sRNA scr5239 represses pepck at the post-transcriptional level and thus modulates the intracellular level of phosphoenolpyruvate (PEP). The expression of scr5239 in turn is dependent on the global transcriptional regulator DasR, thus creating a feedback loop regulation of the central carbon metabolism. By post-transcriptional regulation of PEPCK and in all likelihood other targets, scr5239 adds an additional layer to the DasR regulatory network and provides a tool to control the metabolism dependent on the available carbon source.

4.
Proc Natl Acad Sci U S A ; 112(45): 14054-9, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26494285

RESUMO

Flavin mononucleotide (FMN) riboswitches are genetic elements, which in many bacteria control genes responsible for biosynthesis and/or transport of riboflavin (rib genes). Cytoplasmic riboflavin is rapidly and almost completely converted to FMN by flavokinases. When cytoplasmic levels of FMN are sufficient ("high levels"), FMN binding to FMN riboswitches leads to a reduction of rib gene expression. We report here that the protein RibR counteracts the FMN-induced "turn-off" activities of both FMN riboswitches in Bacillus subtilis, allowing rib gene expression even in the presence of high levels of FMN. The reason for this secondary metabolic control by RibR is to couple sulfur metabolism with riboflavin metabolism.


Assuntos
Bacillus subtilis/metabolismo , Mononucleotídeo de Flavina/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Riboflavina/metabolismo , Riboswitch/fisiologia , Enxofre/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Metaboloma/genética , Proteínas Recombinantes/isolamento & purificação
5.
PLoS One ; 10(3): e0120147, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785836

RESUMO

While transcriptional regulation of the primary and secondary metabolism of the model organism Streptomyces coelicolor is well studied, little is still known about the role small noncoding RNAs (sRNAs) play in regulating gene expression in this organism. Here, we report the identification of a second target of the sRNA scr5239, an sRNA highly conserved in streptomycetes. The 159 nt long sRNA binds its target, the mRNA of the cobalamin independent methionine synthase metE (SCO0985), at the 5' end of its open reading frame thereby repressing translation. We show that a high methionine level induces expression of scr5239 itself. This leads, in a negative feedback loop, to the repression of methionine biosynthesis. In contrast to the first reported target of this sRNA, the agarase dagA, this interaction seems to be conserved in a wide number of streptomycetes.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Pequeno RNA não Traduzido/genética , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Sequência de Bases , Sequência Conservada , Regulação Bacteriana da Expressão Gênica , Metionina/biossíntese , Fases de Leitura Aberta/genética , Streptomyces coelicolor/metabolismo
6.
Methods Enzymol ; 550: 283-99, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25605391

RESUMO

Here we provide a step-by-step protocol for the application of synthetic theophylline-dependent riboswitches for conditional gene expression in Streptomyces coelicolor. Application of the method requires a sequence of only ~85 nt to be inserted between the transcriptional start site and the start codon of a gene of interest. No auxiliary factors are needed. All tested riboswitch variants worked well in concert with the promoters galP2, ermEp1, and SF14. Moreover, they allowed theophylline-dependent expression not only of the heterologous ß-glucuronidase reporter gene but also of dagA, an endogenous agarase gene. The right combination of the tested promoters with the riboswitch variants allows for the adjustment of the desired dynamic range of regulation in a highly specific and dose-dependent manner and underlines the orthogonality of riboswitch regulation. We anticipate that any additional natural or synthetic promoter can be combined with the presented riboswitches. Moreover, this system should easily be transferable to other Streptomyces species, and most likely to any other genetically manipulable bacteria.


Assuntos
Riboswitch/genética , Streptomyces coelicolor/genética , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Regiões Promotoras Genéticas
7.
RNA Biol ; 11(5): 464-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24667326

RESUMO

Streptomycetes are Gram-positive, GC-rich, soil dwelling bacteria, occurring ubiquitary throughout nature. They undergo extensive morphological changes from spores to filamentous mycelia and produce a plethora of secondary metabolites. Owing to their complex life cycle, streptomycetes require efficient regulatory machinery for the control of gene expression. Therefore, they possess a large diversity of regulators. Within this review we summarize the current knowledge about the importance of small non-coding RNA for the control of gene expression in these organisms.


Assuntos
RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Streptomyces/genética , Composição de Bases , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Genômica , RNA Bacteriano/química , Pequeno RNA não Traduzido/química , Streptomyces coelicolor/genética , Terminologia como Assunto
8.
Microbiology (Reading) ; 159(Pt 7): 1416-1422, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23676435

RESUMO

We have demonstrated the portability of theophylline-dependent synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. The riboswitches mediate dose-dependent, up to 260-fold activation of reporter gene expression. Riboswitch regulation is a simple method requiring a sequence of only ~85 nt to be inserted between a transcriptional start site and the start codon; no additional auxiliary factors are necessary. The promoters galP2, ermEp1 and SF14 worked well in concert with the riboswitches. They allowed theophylline-dependent expression of not only the heterologous ß-glucuronidase reporter gene but also dagA, an endogenous agarase gene. The successful combination of all tested promoters with the riboswitches underlines the orthogonality of riboswitch regulation. We anticipate that any additional natural or synthetic promoters can be combined with the riboswitch.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Riboswitch/genética , Streptomyces coelicolor/genética , Proteínas de Bactérias/genética , Sequência de Bases , Códon de Iniciação , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Streptomyces coelicolor/metabolismo , Teofilina/farmacologia , Sítio de Iniciação de Transcrição
9.
Microbiology (Reading) ; 158(Pt 2): 424-435, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22075028

RESUMO

Transcriptional regulation of primary and secondary metabolism is well-studied in Streptomyces coelicolor, a model organism for antibiotic production and cell differentiation. In contrast, little is known about post-transcriptional regulation and the potential functions of small non-coding RNAs (sRNAs) in this Gram-positive, GC-rich soil bacterium. Here, we report the identification and characterization of scr5239, an sRNA highly conserved in the genus Streptomyces. The sRNA is 159 nt long, composed of five stem-loops, and encoded in the intergenic region between SCO5238 and SCO5239. scr5239 expression is constitutive under several stress and growth conditions but dependent on the nitrogen supply. scr5239 decreases the production of the antibiotic actinorhodin, and represses expression of the extracellular agarase dagA at the post-transcriptional level by direct base pairing to the coding region 33 nt downstream of the ribosome-binding site.


Assuntos
Proteínas de Bactérias/genética , Pareamento de Bases , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Glicosídeo Hidrolases/genética , Fases de Leitura Aberta , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Streptomyces coelicolor/enzimologia , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Glicosídeo Hidrolases/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
10.
RNA Biol ; 8(3): 468-77, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21521948

RESUMO

Streptomyces coelicolor is considered the model organism among Gram positive, GC rich bacteria. Its genome has been sequenced but little is known about the occurrence and distribution of small non-coding RNAs in this biotechnologically relevant organism. Using deep sequencing we analyzed the transcriptome at the end of exponential growth, which corresponds to the onset of secondary metabolism. We mapped 193 transcriptional start sites of mRNA genes and identified putative new and alternative open reading frames. We identified 63 non-coding RNAs including 29 cis encoded antisense RNAs, and confirmed expression for 11, most of them being growth-phase dependent. A comparison between the sequencing results and bioinformatic sRNA predictions using Dynalign and RNAz revealed only a small overlap between the different approaches.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Bacteriano/química , Pequeno RNA não Traduzido/química , Streptomyces coelicolor/genética , Sequência de Bases , Fases de Leitura Aberta , RNA Antissenso/química , Streptomyces coelicolor/metabolismo
11.
Clin Chem Lab Med ; 46(1): 85-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18020973

RESUMO

BACKGROUND: The VCS technology of Beckman Coulter differentiates white blood cells based on measures of their volume, conductivity and light scatter. The current study investigated the predictive value of index measures, known as research population data, for the detection of chronic lymphatic leukemia and myelodysplastic syndrome. METHODS: Blood cell counts were performed in samples from 44 patients with chronic lymphatic leukemia, 19 patients with myelodysplastic syndrome and 199 healthy blood donors using the Beckman Coulter LH750. Means and standard deviations of volume, conductivity and scatter of lymphocytes and neutrophils were evaluated as predictors for both diseases. Their specificity and selectivity were evaluated by logistic regression and receiver operating characteristic curve analysis. RESULTS: Research population data were significantly different among groups. For chronic lymphatic leukemia, standard deviations of lymphocytes scatter and volume showed most relevant differences in comparison to healthy blood donors (sensitivity 88.6%, specificity 84.4%). For myelodysplastic syndrome, standard deviations of neutrophils conductivity were most predictive (sensitivity 73.7%, specificity 93.0%). Areas under corresponding receiver operating characteristic curves were 0.941 and 0.951, respectively. CONCLUSIONS: Based on their high predictive value, research population data could be routinely used to screen for chronic lymphatic leukemia and myelodysplastic syndrome.


Assuntos
Contagem de Células Sanguíneas/métodos , Técnicas e Procedimentos Diagnósticos , Leucemia Linfoide/diagnóstico , Leucemia Mielomonocítica Crônica/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Leucemia Linfoide/sangue , Leucemia Mielomonocítica Crônica/sangue , Masculino , Pessoa de Meia-Idade , Valores de Referência , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...