Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 277: 111511, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091784

RESUMO

This work was designed to investigate the influence of artificial aeration on the sludge decomposition process in mesocosm sludge treatment reed beds (STRBs). In addition to the typical STRB design, where ventilation is mainly provided by a drainage pipe, passive aeration via a "chimney" and active aeration via a blower were introduced. During the entire observation period of 1.5 years, O2 concentrations in the upper part of the filter were significantly higher in the artificially aerated beds. To determine decomposition rates, a study with decomposition bags, measurements of CO2 emissions from the STRB and isotopic partitioning of CO2 emissions were performed. The results indicate an accelerated sludge degradation process in both active and passive beds. However, this effect was limited to part of the season and could not be demonstrated by episodic measurements of CO2 efflux. The CO2 efflux showed a seasonal pattern. Average CO2 efflux was below 3.0 µmol m-2 s-1 in the winter months and reached 43 µmol m-2 s-1 in the warmer months. The low sludge load and drought period in summer 2018 resulted in an extremely low CO2 efflux in August 2018. Isotopic analyses revealed changes in decomposition dynamics for certain parts of the season, differences in contributions of sludge and plant derived CO2 to total CO2 emissions from differently aerated beds. Overall, passive aeration proved to be similarly efficient as active aeration and could therefore be considered for application in a full-scale system.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos
2.
Sci Total Environ ; 392(1): 130-6, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18086489

RESUMO

The distribution of lead and zinc in glomalin-related soil protein (GRSP), a widespread glycoprotein presumably produced by arbuscular mycorrhizal fungi (AMF) in soil, and in some other soil fractions (soil organic matter - [SOM], carbonates, phosphates, etc.) was studied in soils from an area near a lead smelter that differed in SOM, carbonates and heavy metal (HM) content. Total GRSP represented 5.4-21.2% of the SOM and was positively correlated with the soil Pb and Zn concentrations (r=0.57 and 0.66, p=0.007 and p=0.001 for Pb and Zn, respectively). Pb and Zn were predominantly bound to carbonates and organic matter. The amount of lead bound to GRSP varied between 0.69 and 23.4 mg g(-1) DW GRSP which is 0.8-15.5% of the total soil Pb. The amount of GRSP-bound metal was positively correlated with the total concentration in the case of Pb (r=0.90, p=0.000) but the opposite was found for Zn (r=-0.41, p=0.048), indicating that GRSP predominantly binds Pb. The percentages of HM-GRSP in HM-SOM were variable and were not correlated with SOM content.


Assuntos
Proteínas Fúngicas/química , Chumbo/análise , Poluentes do Solo/análise , Zinco/análise , Micorrizas/química
3.
J Environ Qual ; 32(2): 500-6, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12708673

RESUMO

Using a soil column experiment, we compared the effect of a single dose and weekly additions of ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedissuccinate (EDDS) on the uptake of Pb, Zn, and Cd by Chinese cabbage [Brassica rapa L. subsp. pekinensis (Lour.) Hanelt], and on the leaching of heavy metals through the soil profile. The analysis of plant material revealed that both chelates increased the concentrations of Pb and, to a lesser extent, also of Zn and Cd in the leaves of the test plant. The most effective applications were single doses of 10 mmol EDTA and EDDS kg(-1) soil, which caused the concentrations of Pb in the shoots to increase 94.2- and 102.3-fold, respectively, relative to the control. The same dose of EDTA increased the concentration of Zn and Cd in the leaves 4.3- and 3.8-fold and of EDDS 4.7- and 3.5-fold, respectively. In treatments with weekly additions and lower concentrations of both chelates, EDTA was more effective than EDDS in increasing the plant uptake of Pb. In soil columns treated with weekly additions of 10 mmol kg(-1) EDTA, on average 22.7, 7.0, and 39.8% of initial total Pb, Zn, and Cd in the soil were leached through the soil profile. The same amount of EDDS caused much lower leaching of Pb and Cd--only 0.8 and 1.5% of initial total concentrations. Leaching of Zn, 6.2% of the total concentration, was comparable with the EDTA treatment. A biotest with red clover (Trifolium pratense L.) indicated a greater phytotoxic effect of EDTA than EDDS addition. EDDS was also less toxic to soil fungi, as determined by phospholipid fatty acid (PLFA) analysis, and caused less stress to soil microorganisms, as indicated by the trans to cis PLFA ratio. Chelate addition did not prevent the development of arbuscular mycorrhiza on red clover.


Assuntos
Brassica/química , Quelantes/química , Etilenodiaminas/química , Chumbo/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Succinatos/química , Trifolium/química , Biodegradação Ambiental , Ácido Edético/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...