Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 237: 113861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552288

RESUMO

Copper and copper oxide nanoparticles (CuNPs) have unique physicochemical properties that make them highly promising for biomedical applications. This review discusses the application of CuNPs in biomedicine, including diagnosis, therapy, and theranostics. Recent synthesis methods, with an emphasis on green approaches, are described, and the latest techniques for nanoparticle characterization are critically analyzed. CuNPs, including Cu2O, CuO, and Cu, have significant potential as anti-cancer agents, drug delivery systems, and photodynamic therapy enhancers, among other applications. While challenges such as ensuring biocompatibility and stability must be addressed, the state-of-the-art research reviewed here provides strong evidence for the efficacy and versatility of CuNPs. These multifunctional properties have been extensively researched and documented, showcasing the immense potential of CuNPs in biomedicine. Overall, the evidence suggests that CuNPs are a promising avenue for future research and development in biomedicine. We strongly support further progress in the development of synthesis and application strategies to enhance the effectiveness and safety of CuNPs for clinical purposes.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Cobre/química , Nanopartículas Metálicas/química , Nanopartículas/química , Antioxidantes/química , Extratos Vegetais/química
2.
Dalton Trans ; 53(3): 1048-1057, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38099594

RESUMO

Metal-organic frameworks (MOFs) are widely used in the biomedical industry. In this study, we developed a new method for obtaining a metal-organic structure of strontium and terephthalic acid, Sr(BDC), and an alternative activation method for removing DMF from the pores. Sr(BDC) MOFs were successfully prepared and characterized by XRD, FTIR, TGA, and SEM. The importance of the activation steps was confirmed by TGA, which showed that the Sr(BDC)(DMF) sample can contain up to a quarter of the solvent (DMF) before activation. In our study, IR spectroscopy confirmed the possibility of removing DMF by ethanol treatment from the Sr-BDC crystals. A comparative analysis of the effect of the activation method on the specific surface and pore size of Sr-BDC and its sorption properties using the model drug doxorubicin showed that due to the undeveloped surface of the Sr-(BDC)(DMF) sample, it is not possible to obtain an adsorption isotherm and determine the pore size distribution, thus showing the importance of the activation step. Cytotoxicity and apoptosis assays were carried out to study the biological activity of MOFs, and we observed relatively low toxicity in the tested concentration range after 48 h, with over 92% cell survival for Sr(BDC)(DMF) and Sr(BDC)(260 °C), with a decrease only in the highest concentration (800 mg L-1). Similar results were observed in our apoptosis assays, as they revealed low apoptotic population generation of 2.52%, 3.23%, and 2.77% for Sr(BDC)(DMF), Sr(BDC) and Sr(BDC)(260 °C), respectively. Overall, the findings indicate that ethanol-activated Sr(BDC) shows potential as a safe and effective material for drug delivery.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Metais , Etanol , Concentração de Íons de Hidrogênio
3.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175523

RESUMO

Metal-organic frameworks (MOFs) are a very promising platform for applications in various industries. In recent years, a variety of methods have been developed for the preparation and modification of MOFs, providing a wide range of materials for different applications in life science. Despite the wide range of different MOFs in terms of properties/sizes/chemical nature, they have not found wide application in biomedical practices at present. In this review, we look at the main methods for the preparation of MOFs that can ensure biomedical applications. In addition, we also review the available options for tuning the key parameters, such as size, morphology, and porosity, which are crucial for the use of MOFs in biomedical systems. This review also analyses possible applications for MOFs of different natures. Their high porosity allows the use of MOFs as universal carriers for different therapeutic molecules in the human body. The wide range of chemical species involved in the synthesis of MOFs makes it possible to enhance targeting and prolongation, as well as to create delivery systems that are sensitive to various factors. In addition, we also highlight how injectable, oral, and even ocular delivery systems based on MOFs can be used. The possibility of using MOFs as therapeutic agents and sensitizers in photodynamic, photothermal, and sonodynamic therapy was also reviewed. MOFs have demonstrated high selectivity in various diagnostic systems, making them promising for future applications. The present review aims to systematize the main ways of modifying MOFs, as well as the biomedical applications of various systems based on MOFs.


Assuntos
Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/uso terapêutico , Estruturas Metalorgânicas/química , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Porosidade
4.
Polymers (Basel) ; 14(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35683959

RESUMO

Nanotechnology plays an important role in biological research, especially in the development of delivery systems with lower toxicity and greater efficiency. These include not only metallic nanoparticles, but also biopolymeric nanoparticles. Biopolymeric nanoparticles (BPNs) are mainly developed for their provision of several advantages, such as biocompatibility, biodegradability, and minimal toxicity, in addition to the general advantages of nanoparticles. Therefore, given that biopolymers are biodegradable, natural, and environmentally friendly, they have attracted great attention due to their multiple applications in biomedicine, such as drug delivery, antibacterial activity, etc. This review on biopolymeric nanoparticles highlights their various synthesis methods, such as the ionic gelation method, nanoprecipitation method, and microemulsion method. In addition, the review also covers the applications of biodegradable polymeric nanoparticles in different areas-especially in the pharmaceutical, biomedical, and agricultural domains. In conclusion, the present review highlights recent advances in the synthesis and applications of biopolymeric nanoparticles and presents both fundamental and applied aspects that can be used for further development in the field of biopolymeric nanoparticles.

5.
Nanomaterials (Basel) ; 10(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717947

RESUMO

This work describes a novel approach to produce high quality release paper at lower cost than traditional methods. The anti-adhesive properties of release paper require the use of expensive machine glazed kraft or "Glassine" paper as the paper base. A series of polymer coatings including polyvinyl alcohol, carboxymethyl cellulose, polyethylene vinyl acetate, and polystyrene were chemically synthesized and coated onto a low cost pulp paper base. Surface roughness (Sa) and smoothness coefficients (k) were determined by atomic force microscopy (AFM), and the interactions between the polymer coating and base paper were investigated by Raman spectroscopy. Studies show the use of polyethylene vinyl acetate (PEVA) as a pre-coating layer on low cost pulp paper exhibits similar anti-adhesive properties as higher cost paper bases. In low margin markets such as the production of release paper, decreases in cost are critical to industry survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...