Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175523

RESUMO

Metal-organic frameworks (MOFs) are a very promising platform for applications in various industries. In recent years, a variety of methods have been developed for the preparation and modification of MOFs, providing a wide range of materials for different applications in life science. Despite the wide range of different MOFs in terms of properties/sizes/chemical nature, they have not found wide application in biomedical practices at present. In this review, we look at the main methods for the preparation of MOFs that can ensure biomedical applications. In addition, we also review the available options for tuning the key parameters, such as size, morphology, and porosity, which are crucial for the use of MOFs in biomedical systems. This review also analyses possible applications for MOFs of different natures. Their high porosity allows the use of MOFs as universal carriers for different therapeutic molecules in the human body. The wide range of chemical species involved in the synthesis of MOFs makes it possible to enhance targeting and prolongation, as well as to create delivery systems that are sensitive to various factors. In addition, we also highlight how injectable, oral, and even ocular delivery systems based on MOFs can be used. The possibility of using MOFs as therapeutic agents and sensitizers in photodynamic, photothermal, and sonodynamic therapy was also reviewed. MOFs have demonstrated high selectivity in various diagnostic systems, making them promising for future applications. The present review aims to systematize the main ways of modifying MOFs, as well as the biomedical applications of various systems based on MOFs.


Assuntos
Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/uso terapêutico , Estruturas Metalorgânicas/química , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Porosidade
2.
Polymers (Basel) ; 14(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35683959

RESUMO

Nanotechnology plays an important role in biological research, especially in the development of delivery systems with lower toxicity and greater efficiency. These include not only metallic nanoparticles, but also biopolymeric nanoparticles. Biopolymeric nanoparticles (BPNs) are mainly developed for their provision of several advantages, such as biocompatibility, biodegradability, and minimal toxicity, in addition to the general advantages of nanoparticles. Therefore, given that biopolymers are biodegradable, natural, and environmentally friendly, they have attracted great attention due to their multiple applications in biomedicine, such as drug delivery, antibacterial activity, etc. This review on biopolymeric nanoparticles highlights their various synthesis methods, such as the ionic gelation method, nanoprecipitation method, and microemulsion method. In addition, the review also covers the applications of biodegradable polymeric nanoparticles in different areas-especially in the pharmaceutical, biomedical, and agricultural domains. In conclusion, the present review highlights recent advances in the synthesis and applications of biopolymeric nanoparticles and presents both fundamental and applied aspects that can be used for further development in the field of biopolymeric nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...