Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 167(1): 200-15, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25429110

RESUMO

Pectin methylesterase (PME) controls the methylesterification status of pectins and thereby determines the biophysical properties of plant cell walls, which are important for tissue growth and weakening processes. We demonstrate here that tissue-specific and spatiotemporal alterations in cell wall pectin methylesterification occur during the germination of garden cress (Lepidium sativum). These cell wall changes are associated with characteristic expression patterns of PME genes and resultant enzyme activities in the key seed compartments CAP (micropylar endosperm) and RAD (radicle plus lower hypocotyl). Transcriptome and quantitative real-time reverse transcription-polymerase chain reaction analysis as well as PME enzyme activity measurements of separated seed compartments, including CAP and RAD, revealed distinct phases during germination. These were associated with hormonal and compartment-specific regulation of PME group 1, PME group 2, and PME inhibitor transcript expression and total PME activity. The regulatory patterns indicated a role for PME activity in testa rupture (TR). Consistent with a role for cell wall pectin methylesterification in TR, treatment of seeds with PME resulted in enhanced testa permeability and promoted TR. Mathematical modeling of transcript expression changes in germinating garden cress and Arabidopsis (Arabidopsis thaliana) seeds suggested that group 2 PMEs make a major contribution to the overall PME activity rather than acting as PME inhibitors. It is concluded that regulated changes in the degree of pectin methylesterification through CAP- and RAD-specific PME and PME inhibitor expression play a crucial role during Brassicaceae seed germination.


Assuntos
Hidrolases de Éster Carboxílico/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/fisiologia , Lepidium sativum/fisiologia , Proteínas de Plantas/fisiologia , Sementes/fisiologia , Hidrolases de Éster Carboxílico/biossíntese , Hidrolases de Éster Carboxílico/genética , Endosperma/enzimologia , Endosperma/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Hipocótilo/enzimologia , Hipocótilo/fisiologia , Lepidium sativum/enzimologia , Lepidium sativum/genética , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Sementes/enzimologia
2.
Proc Natl Acad Sci U S A ; 111(34): E3571-80, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25114251

RESUMO

Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the delay of germination 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Lepidium sativum/crescimento & desenvolvimento , Lepidium sativum/genética , Arabidopsis/fisiologia , Fenômenos Biomecânicos , Sequência Conservada , Diploide , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação/genética , Germinação/fisiologia , Giberelinas/metabolismo , Lepidium sativum/fisiologia , Dados de Sequência Molecular , Mutação , Dormência de Plantas/genética , Dormência de Plantas/fisiologia , Plantas Geneticamente Modificadas , Sementes/crescimento & desenvolvimento , Temperatura
3.
Plant Physiol ; 161(4): 1903-17, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23426197

RESUMO

Seed dormancy is a block to the completion of germination of an intact viable seed under favorable conditions and is an adaptive and agronomically important trait. Thus, elucidating conserved features of dormancy mechanisms is of great interest. The worldwide-distributed genus Lepidium (Brassicaceae) is well suited for cross-species comparisons investigating the origin of common or specific early-life-history traits. We show here that homologs of the seed dormancy-specific gene delay of germination1 (DOG1) from Arabidopsis (Arabidopsis thaliana) are widespread in the genus Lepidium. The highly dormant Lepidium papillosum is a polyploid species and possesses multiple structurally diversified DOG1 genes (LepaDOG1), some being expressed in seeds. We used the largely elongated and well-structured infructescence of L. papillosum for studying primary dormancy induction during seed development and maturation with high temporal resolution. Using simultaneous germination assays and marker protein expression detection, we show that LepaDOG1 proteins are expressed in seeds during maturation prior to dormancy induction. Accumulation of LepaDOG1 takes place in seeds that gain premature germinability before and during the seed-filling stage and declines during the late maturation and desiccation phase when dormancy is induced. These analyses of the Lepidium DOG1 genes and their protein expression patterns highlight similarities and species-specific differences of primary dormancy induction mechanism(s) in the Brassicaceae.


Assuntos
Evolução Molecular , Genes de Plantas/genética , Lepidium/crescimento & desenvolvimento , Lepidium/genética , Dormência de Plantas/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Brassicaceae/genética , Cromossomos de Plantas/genética , Clonagem Molecular , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Lepidium/anatomia & histologia , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Sementes/genética
4.
J Exp Bot ; 63(14): 5337-50, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22821938

RESUMO

Myrigalone A (MyA) is a rare flavonoid in fruit leachates of Myrica gale, a deciduous shrub adapted to flood-prone habitats. As a putative allelochemical it inhibits seed germination and seedling growth. Using Lepidium sativum as a model target species, experiments were conducted to investigate how environmental cues modulate MyA's interference with key processes of seed germination. Time course analyses of L. sativum testa and endosperm rupture under different light conditions and water potentials were combined with quantifying testa permeability, endosperm weakening, tissue-specific gibberellin (GA) and abscisic acid (ABA) contents, as well as embryo growth and apoplastic superoxide production important for cell expansion growth. Lepidium sativum testa permeability and early water uptake by imbibition is enhanced by MyA. During late germination, MyA inhibits endosperm weakening and embryo growth, both processes required for endosperm rupture. Inhibition of embryo cell expansion by MyA depends on environmental cues, which is evident from the light-modulated severity of the MyA-mediated inhibition of apoplastic superoxide accumulation. Several important key weakening and growth processes during early and late germination are targets for MyA. These effects are modulated by light conditions and ambient water potential. It is speculated that MyA is a soil seed bank-destroying allelochemical that secures the persistence of M. gale in its flood-prone environment.


Assuntos
Chalconas/farmacologia , Processamento de Imagem Assistida por Computador/métodos , Lepidium sativum/efeitos dos fármacos , Lepidium sativum/embriologia , Luz , Água/metabolismo , Ácido Abscísico/metabolismo , Endosperma/efeitos dos fármacos , Endosperma/embriologia , Endosperma/genética , Germinação/efeitos dos fármacos , Giberelinas/metabolismo , Lepidium sativum/metabolismo , Myrica/química , Sementes/química , Sais de Tetrazólio/química
5.
Plant Cell Physiol ; 53(1): 81-95, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21908442

RESUMO

Myrica gale L. (sweet gale) fruit leachate contains myrigalone A (MyA), a rare C-methylated dihydrochalcone and putative allelochemical, which is known to be a phytotoxin impeding seedling growth. We found that MyA inhibited Lepidium sativum L. seed germination in a dose-dependent manner. MyA did not affect testa rupture, but inhibited endosperm rupture and the transition to subsequent seedling growth. MyA inhibited micropylar endosperm cap (CAP) weakening and the increase in the growth potential of the radical/hypocotyl region (RAD) of the embryo, both being key processes required for endosperm rupture. We compared the contents of abscisic acid (ABA) and gibberellins in the tissues and found that the major bioactive forms of gibberellin in L. sativum seed tissues were GA(4) and GA(6), while GA(8) and GA(13) were abundant inactive metabolites. MyA did not appreciably affect the ABA contents, but severely interfered with gibberellin metabolism and signaling by inhibiting important steps catalyzed by GA3 oxidase, as well as by interfering with the GID1-type gibberellin signaling pathway. The hormonally and developmentally regulated formation of apoplastic superoxide radicals is important for embryo growth. Specific zones within the RAD were associated with accumulation of apoplastic superoxide radicals and endoreduplication indicative of embryo cell extension. MyA negatively affected both of these processes and acted as a scavenger of apoplastic reactive oxygen species. We propose that MyA is an allelochemical with a novel mode of action on seed germination.


Assuntos
Chalconas/farmacologia , Cicloexanonas/farmacologia , Endosperma/embriologia , Germinação/efeitos dos fármacos , Giberelinas/metabolismo , Lepidium sativum/efeitos dos fármacos , Lepidium sativum/embriologia , Superóxidos/metabolismo , Ácido Abscísico/farmacologia , Chalconas/química , Cicloexanonas/química , Endosperma/efeitos dos fármacos , Endosperma/genética , Etilenos/farmacologia , Frutas/efeitos dos fármacos , Frutas/metabolismo , Duplicação Gênica/efeitos dos fármacos , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Germinação/genética , Giberelinas/farmacologia , Lepidium sativum/genética , Lepidium sativum/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Exsudatos de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento
6.
Planta ; 235(1): 137-51, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21858448

RESUMO

Gibberellins (GA) are involved in bud dormancy release in several species. We show here that GA-treatment released bud dormancy, initiated bud sprouting and promoted sprout growth of excised potato tuber bud discs ('eyes'). Monoterpenes from peppermint oil (PMO) and S-(+)-carvone (CAR) interact with the GA-mediated bud dormancy release in a hormesis-type response: low monoterpene concentrations enhance dormancy release and the initiation of bud sprouting, whereas high concentrations inhibit it. PMO and CAR did, however, not affect sprout growth rate after its onset. We further show that GA-induced dormancy release is associated with tissue-specific regulation of α- and ß-amylases. Molecular phylogenetic analysis shows that potato α-amylases cluster into two distinct groups: α-AMY1 and α-AMY2. GA-treatment induced transcript accumulation of members of both α-amylase groups, as well as α- and ß-amylase enzyme activity in sprout and 'sub-eye' tissues. In sprouts, CAR interacts with the GA-mediated accumulation of α-amylase transcripts in an α-AMY2-specific and dose-dependent manner. Low CAR concentrations enhance the accumulation of α-AMY2-type α-amylase transcripts, but do not affect the α-AMY1-type transcripts. Low CAR concentrations also enhance the accumulation of α- and ß-amylase enzyme activity in sprouts, but not in 'sub-eye' tissues. In contrast, high CAR concentrations have no appreciable effect in sprouts on the enzyme activities and the α-amylase transcript abundances of either group. The dose-dependent effects on the enzyme activities and the α-AMY2-type α-amylase transcripts in sprouts are specific for CAR but not for PMO. Different monoterpenes therefore may have specific targets for their interaction with hormone signalling pathways.


Assuntos
Giberelinas/farmacologia , Monoterpenos/farmacologia , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento , alfa-Amilases/biossíntese , beta-Amilase/biossíntese , Monoterpenos Cicloexânicos , Indução Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mentha piperita/química , Monoterpenos/metabolismo , Filogenia , Dormência de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Óleos de Plantas/metabolismo , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Suíça , Transcrição Gênica , alfa-Amilases/genética , alfa-Amilases/metabolismo , beta-Amilase/genética , beta-Amilase/metabolismo
7.
J Exp Bot ; 62(14): 5131-47, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21778177

RESUMO

Germination of endospermic seeds is partly regulated by the micropylar endosperm, which acts as constraint to radicle protrusion. Gibberellin (GA) signalling pathways control coat-dormancy release, endosperm weakening, and organ expansion during seed germination. Three GIBBERELLIN INSENSITIVE DWARF1 (GID1) GA receptors are known in Arabidopsis thaliana: GID1a, GID1b, and GID1c. Molecular phylogenetic analysis of angiosperm GID1s reveals that they cluster into two eudicot (GID1ac, GID1b) groups and one monocot group. Eudicots have at least one gene from each of the two groups, indicating that the different GID1 receptors fulfil distinct roles during plant development. A comparative Brassicaceae approach was used, in which gid1 mutant and whole-seed transcript analyses in Arabidopsis were combined with seed-tissue-specific analyses of its close relative Lepidium sativum (garden cress), for which three GID1 orthologues were cloned. GA signalling via the GID1ac receptors is required for Arabidopsis seed germination, GID1b cannot compensate for the impaired germination of the gid1agid1c mutant. Transcript expression patterns differed temporarily, spatially, and hormonally, with GID1b being distinct from GID1ac in both species. Endosperm weakening is mediated, at least in part, through GA-induced genes encoding cell-wall-modifying proteins. A suppression subtraction hybridization (SSH) cDNA library enriched for sequences that are highly expressed during early germination in the micropylar endosperm contained expansins and xyloglucan endo-transglycosylases/hydrolases (XTHs). Their transcript expression patterns in both species strongly suggest that they are regulated by distinct GID1-mediated GA signalling pathways. The GID1ac and GID1b pathways seem to fulfil distinct regulatory roles during Brassicaceae seed germination and seem to control their downstream targets distinctly.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Germinação , Lepidium sativum/metabolismo , Receptores de Superfície Celular/metabolismo , Sementes/crescimento & desenvolvimento , Arabidopsis/classificação , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Lepidium sativum/classificação , Lepidium sativum/genética , Lepidium sativum/crescimento & desenvolvimento , Dados de Sequência Molecular , Família Multigênica , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Receptores de Superfície Celular/genética , Sementes/genética , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...