Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 48: 109292, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383772

RESUMO

When predicting sound pressure levels induced by structure-borne sound sources and describing the sound propagation path through the building structure as exactly as possible, it is necessary to characterize the vibration behavior of the structure-borne sound sources. In this investigation, the characterization of structure-borne sound sources was performed using the two-stage method (TSM) described in EN 15657. Four different structure-borne sound sources were characterized and subsequently installed in a lightweight test stand. The resulting sound pressure levels in an adjacent receiving room were measured. In the second step, sound pressure levels were predicted according to EN 12354-5 based on the parameters of the structure-borne sound sources. Subsequently, the predicted and the measured sound pressure levels were compared to obtain reliable statements on the achievable accuracy when using source quantities determined by TSM with this prediction method. In addition to the co-submitted article (Vogel et al., 2023), the sound pressure level prediction according to EN 12354-5 in detail is described. Furthermore, all data used are provided.

2.
J Clin Med ; 12(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36835835

RESUMO

Physical exercise demonstrates a special case of aerosol emission due to its associated elevated breathing rate. This can lead to a faster spread of airborne viruses and respiratory diseases. Therefore, this study investigates cross-infection risk during training. Twelve human subjects exercised on a cycle ergometer under three mask scenarios: no mask, surgical mask, and FFP2 mask. The emitted aerosols were measured in a grey room with a measurement setup equipped with an optical particle sensor. The spread of expired air was qualitatively and quantitatively assessed using schlieren imaging. Moreover, user satisfaction surveys were conducted to evaluate the comfort of wearing face masks during training. The results indicated that both surgical and FFP2 masks significantly reduced particles emission with a reduction efficiency of 87.1% and 91.3% of all particle sizes, respectively. However, compared to surgical masks, FFP2 masks provided a nearly tenfold greater reduction of the particle size range with long residence time in the air (0.3-0.5 µm). Furthermore, the investigated masks reduced exhalation spreading distances to less than 0.15 m and 0.1 m in the case of the surgical mask and FFP2 mask, respectively. User satisfaction solely differed with respect to perceived dyspnea between no mask and FFP2 mask conditions.

3.
Data Brief ; 42: 108200, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35515986

RESUMO

This dataset consists mainly of two subsets. The first subset includes measurements and simulation data conducted to validate the simulation tool ENVI-met. The measurements were conducted at the campus of the Bauhaus-University Weimar in Weimar, Germany and consisted of recording exterior air temperature, globe temperature, relative humidity, and wind velocity at 1.5 m at four points on four different days. After the measurements, the geometry of the campus was modelled and meshed; the simulations were conducted using the weather data of the measurements days with the aim of investigating the accuracy of the model. The second data subset consists of ENVI-met simulation data of the potential of facade greening in improving the outdoor environment and the indoor air temperature during heatwaves in Central European cities. The data consist of the boundary conditions and the simulation output of two simulation models: with and without facade greening. The geometry of the models corresponded to a residential buildings district in Stuttgart, Germany. The simulation output consisted of exterior air temperature, mean radiant temperature, relative humidity, and wind velocity at 12 different probe points in the model in addition to the indoor air temperature of an exemplary building. The dataset presents both vertical profiles of the probed parameters as well as the time series output of the five-day simulation duration. Both data subsets correspond to the investigations presented in the co-submitted article [1].

4.
Sci Rep ; 12(1): 6473, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440747

RESUMO

It is widely accepted that most people spend the majority of their lives indoors. Most individuals do not realize that while indoors, roughly half of heat exchange affecting their thermal comfort is in the form of thermal infrared radiation. We show that while researchers have been aware of its thermal comfort significance over the past century, systemic error has crept into the most common evaluation techniques, preventing adequate characterization of the radiant environment. Measuring and characterizing radiant heat transfer is a critical component of both building energy efficiency and occupant thermal comfort and productivity. Globe thermometers are typically used to measure mean radiant temperature (MRT), a commonly used metric for accounting for the radiant effects of an environment at a point in space. In this paper we extend previous field work to a controlled laboratory setting to (1) rigorously demonstrate that existing correction factors used in the American Society of Heating Ventilation and Air-conditioning Engineers (ASHRAE) Standard 55 or ISO7726 for using globe thermometers to quantify MRT are not sufficient; (2) develop a correction to improve the use of globe thermometers to address problems in the current standards; and (3) show that mean radiant temperature measured with ping-pong ball-sized globe thermometers is not reliable due to a stochastic convective bias. We also provide an analysis of the maximum precision of globe sensors themselves, a piece missing from the domain in contemporary literature.


Assuntos
Convecção , Termômetros , Temperatura Corporal , Calefação , Temperatura Alta , Humanos , Temperatura
5.
J Med Eng Technol ; 46(3): 231-242, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35176956

RESUMO

Since aerosol inhalation is the most common mechanism for COVID-19 infection, the respiratory protective devices (RPDs) have the highest importance in personal protection. The aim of this study was to assess the efficiency of 10 different RPDs in shortening the travelling distance of exhaled air by range measurement using the schlieren imaging technique. When a RPD is worn by a person resting in a seated position, the expired air does not exceed the human convective boundary layer (CBL). Instead, the CBL lifts the expired aerosols vertically up. Thus, they have a prolonged travelling time in the surrounding air and become less harmful by several mechanisms of virus content decay. Coughing as well as expiration valves can cause far reaching expiration air clouds that cross horizontally the human CBL by opening leakage airway corridors into different directions. Measured by the range of expired air an FFP2 mask provided high security under all conditions tested. A non-vented full-face mask with two viral filters performed even better because of its airtight fit and the excellent filtering capacity of the viral filters during inspiration and expiration, even during cough manoeuvres.


Assuntos
COVID-19 , Dispositivos de Proteção Respiratória , Aerossóis , Tosse , Humanos , Máscaras , SARS-CoV-2
6.
Data Brief ; 40: 107741, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35028342

RESUMO

This dataset presents the numerical analysis of the heat and moisture transport through a facade equipped with a living wall system designated for greywater treatment. While such greening systems provide many environmental benefits, they involve pumping large quantities of water onto the wall assembly, which can increase the risk of moisture in the wall as well as impaired energetic performance due to increased thermal conductivity with increased moisture content in the building materials. This dataset was acquired through numerical simulation using the coupling of two simulation tools, namely Envi-Met and Delphin. This coupling was used to include the complex role the plants play in shaping the near-wall environmental parameters in the hygrothermal simulations. Four different wall assemblies were investigated, each assembly was assessed twice: with and without the living wall. The presented data include the input and output parameters of the simulations, which were presented in the co-submitted article (Alsaad et al., 2022).

7.
Indoor Air ; 31(6): 1798-1814, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34121229

RESUMO

The spread of breathing air when playing wind instruments and singing was investigated and visualized using two methods: (1) schlieren imaging with a schlieren mirror and (2) background-oriented schlieren (BOS). These methods visualize airflow by visualizing density gradients in transparent media. The playing of professional woodwind and brass instrument players, as well as professional classical trained singers were investigated to estimate the spread distances of the breathing air. For a better comparison and consistent measurement series, a single high note, a single low note, and an extract of a musical piece were investigated. Additionally, anemometry was used to determine the velocity of the spreading breathing air and the extent to which it was quantifiable. The results showed that the ejected airflow from the examined instruments and singers did not exceed a spreading range of 1.2 m into the room. However, differences in the various instruments have to be considered to assess properly the spread of the breathing air. The findings discussed below help to estimate the risk of cross-infection for wind instrument players and singers and to develop efficacious safety precautions, which is essential during critical health periods such as the current COVID-19 pandemic.


Assuntos
Movimentos do Ar , Canto , Poluição do Ar em Ambientes Fechados , COVID-19 , Humanos
8.
Crit Care Med ; 49(7): e693-e700, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34135285

RESUMO

OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 is transmitted through aerosols and droplets. Nasal high-flow therapy could possibly increase the spreading of exhalates from patients. The aim of this study is to investigate whether nasal high-flow therapy affects the range of the expiratory plume compared with spontaneous breathing. DESIGN: Interventional experiment on single breaths of a healthy volunteer. SETTING: Research laboratory at the Bauhaus-University Weimar. SUBJECTS: A male subject. INTERVENTIONS: Videos and images from a schlieren optical system were analyzed during spontaneous breathing and different nasal high-flow rates. MEASUREMENTS AND MAIN RESULTS: The maximal exhalation spread was 0.99, 2.18, 2.92, and 4.1 m during spontaneous breathing, nasal high-flow of 20 L/min, nasal high-flow of 40 L/min, and nasal high-flow of 60 L/min, respectively. Spreading of the expiratory plume in the sagittal plane can completely be blocked with a surgical mask. CONCLUSIONS: Nasal high-flow therapy increases the range of the expiratory air up to more than 4 meters. The risk to pick up infectious particles could be increased within this range. Attachment of a surgical mask over the nasal high-flow cannula blocks the expiratory airstream.


Assuntos
Cânula , Expiração , Oxigenoterapia/métodos , Ventilação Pulmonar , Adulto , Transmissão de Doença Infecciosa/prevenção & controle , Voluntários Saudáveis , Humanos , Masculino , Microscopia de Vídeo , Taxa Respiratória , Volume de Ventilação Pulmonar
9.
Indoor Air ; 31(1): 99-111, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32681676

RESUMO

This study investigates the performance of two systems: personalized ventilation (PV) and ductless personalized ventilation (DPV). Even though the literature indicates a compelling performance of PV, it is not often used in practice due to its impracticality. Therefore, the present study assesses the possibility of replacing the inflexible PV with DPV in office rooms equipped with displacement ventilation (DV) in the summer season. Numerical simulations were utilized to evaluate the inhaled concentration of pollutants when PV and DPV are used. The systems were compared in a simulated office with two occupants: a susceptible occupant and a source occupant. Three types of pollution were simulated: exhaled infectious air, dermally emitted contamination, and room contamination from a passive source. Results indicated that PV improved the inhaled air quality regardless of the location of the pollution source; a higher PV supply flow rate positively impacted the inhaled air quality. Contrarily, the performance of DPV was highly sensitive to the source location and the personalized flow rate. A higher DPV flow rate tends to decrease the inhaled air quality due to increased mixing of pollutants in the room. Moreover, both systems achieved better results when the personalized system of the source occupant was switched off.


Assuntos
Poluição do Ar em Ambientes Fechados , Ventilação/métodos , Movimentos do Ar , Poluição do Ar , Expiração , Humanos , Respiração
10.
Indoor Air ; 30(4): 757-766, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32302432

RESUMO

A new large-field, high-sensitivity, single-mirror coincident schlieren optical instrument has been installed at the Bauhaus-Universität Weimar for the purpose of indoor air research. Its performance is assessed by the non-intrusive measurement of the thermal plume of a heated manikin. The schlieren system produces excellent qualitative images of the manikin's thermal plume and also quantitative data, especially schlieren velocimetry of the plume's velocity field that is derived from the digital cross-correlation analysis of a large time sequence of schlieren images. The quantitative results are compared with thermistor and hot-wire anemometer data obtained at discrete points in the plume. Good agreement is obtained, once the differences between path-averaged schlieren data and planar anemometry data are reconciled.


Assuntos
Temperatura Alta , Manequins , Temperatura , Monitoramento Ambiental , Humanos
11.
Indoor Air ; 30(4): 776-789, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32255221

RESUMO

The performance of ductless personalized ventilation (DPV) was compared to the performance of a typical desk fan since they are both stand-alone systems that allow the users to personalize their indoor environment. The two systems were evaluated using a validated computational fluid dynamics (CFD) model of an office room occupied by two users. To investigate the impact of DPV and the fan on the inhaled air quality, two types of contamination sources were modeled in the domain: an active source and a passive source. Additionally, the influence of the compared systems on thermal comfort was assessed using the coupling of CFD with the comfort model developed by the University of California, Berkeley (UCB model). Results indicated that DPV performed generally better than the desk fan. It provided better thermal comfort and showed a superior performance in removing the exhaled contaminants. However, the desk fan performed better in removing the contaminants emitted from a passive source near the floor level. This indicates that the performance of DPV and desk fans depends highly on the location of the contamination source. Moreover, the simulations showed that both systems increased the spread of exhaled contamination when used by the source occupant.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Modelos Químicos , Ventilação , Ar Condicionado , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...