Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 174485, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972421

RESUMO

Water-soluble polyacrylamide (PAM) compounds have been used extensively in various sectors. The abundance of PAM in the environment raises concerns about its environmental impact. However, the mineralization of PAM in water under natural light irradiation remains insufficiently explored. This study utilizes nonionic PAM (nPAM) as a representative model to investigate both the mechanism and efficiency of nPAM degradation in water when exposed to ultraviolet (UV) light with hydrogen peroxide (H2O2) as the hydroxyl radical source. In the dark or with only UVA irradiation, negligible mineralization of nPAM occurred. In contrast, the presence of hydroxyl radicals (produced by the UVA/H2O2 system) produced 50 % nPAM mineralization over 7 days under our experimental conditions. The corresponding molecular weight (MW) of the nPAM was swiftly reduced from 1.58 ×106 Da to 1.59 ×103 Da in 3 days. Moreover, five carboxylic acids and nitrate ions were identified as the photodegradation intermediates of nPAM. The efficiencies of nPAM photodegradation by the UVA/H2O2 system in different natural waters and environmental conditions were assessed. The rate constant for the reaction between the hydroxyl radical and nPAM was 2.17 ×109 M-unit-1 s-1. The half-lives of nPAM in the sea and continental surface waters were determined to be several years and dozens of days, respectively. The application of UVB obviously accelerated the mineralization of nPAM in ultrapure water (71 % degradation in 7 days). Moreover, mineralization of concentrated nPAM (200 mg/L) in sea water was more efficient when both UVA- and UVB-activated H2O2 were used. Additionally, toxic acrylamide was not generated during nPAM photodegradation. Moreover, the photodegradation intermediates from nPAM were found to be neither acutely nor chronically toxic to aquatic organisms. This comprehensive study sheds light on the photochemical fate of nPAM in natural waters and provides essential insight for practical treatment of PAM in water systems.

2.
Molecules ; 27(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35011281

RESUMO

Humankind is facing a climate and energy crisis which demands global and prompt actions to minimize the negative impacts on the environment and on the lives of millions of people. Among all the disciplines which have an important role to play, chemistry has a chance to rethink the way molecules are made and find innovations to decrease the overall anthropic footprint on the environment. In this paper, we will provide a review of the existing knowledge but also recent advances on the manufacturing and end uses of acrylamide-based polymers following the "green chemistry" concept and 100 years after the revolutionary publication of Staudinger on macromolecules. After a review of raw material sourcing options (fossil derivatives vs. biobased), we will discuss the improvements in monomer manufacturing followed by a second part dealing with polymer manufacturing processes and the paths followed to reduce energy consumption and CO2 emissions. In the following section, we will see how the polyacrylamides help reduce the environmental footprint of end users in various fields such as agriculture or wastewater treatment and discuss in more detail the fate of these molecules in the environment by looking at the existing literature, the regulations in place and the procedures used to assess the overall biodegradability. In the last section, we will review macromolecular engineering principles which could help enhance the degradability of said polymers when they reach the end of their life cycle.

3.
Microbiology (Reading) ; 147(Pt 9): 2447-2459, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11535785

RESUMO

Phosphate-limited synthetic culture media were designed to investigate the growth and the pristinamycin production of 'Streptomyces pristinaespiralis' using different nitrogen sources. During balanced growth, either mineral or organic nitrogen sources were readily utilized. However, glutamate and alanine were used as both nitrogen and carbon source, sparing the utilization of the primary carbon source, glucose. Valine was utilized only for its nitrogen and consequently 2-ketoisovalerate was excreted in the medium. Ammonium prevented the utilization of nitrate. Upon phosphate limitation, glycerol, originating from the breakdown of teichoic acids, was released, allowing the recovery of phosphate from the cell wall and the continuation of growth. Under such conditions, ammonium was excreted following the consumption of glutamate and alanine and was later reassimilated after exhaustion of the primary nitrogen source. The mode of utilization of valine prevented the production of pristinamycins due to excretion of 2-ketoisovalerate, one of their direct precursors. For other nitrogen sources, pristinamycin production was controlled by nitrogen catabolic regulation linked to the residual level of ammonium. In the case of nitrate, the negative regulation was alleviated by the absence of ammonium and production then occurred precociously. In the case of amino acids and ammonium, production was delayed until after exhaustion of amino acids and depletion of ammonium.


Assuntos
Antibacterianos/biossíntese , Nitrogênio/metabolismo , Pristinamicina/biossíntese , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo , Alanina/metabolismo , Cloreto de Amônio/metabolismo , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Cinética , Modelos Biológicos , Nitratos/metabolismo , Valina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...