Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 60(22): 6456-6468, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612881

RESUMO

The ArcLight observatory provides hourly continuous time series of light regime data (intensity, spectral composition, and photoperiod) from the Arctic, Svalbard at 79° N. Until now, no complete annual time series of biologically relevant light has been provided from the high Arctic due to insufficient sensitivity of commercial light sensors during the Polar Night. We describe a camera system providing all-sky images and the corresponding integrated spectral irradiance (EPAR) in energy or quanta units, throughout a complete annual cycle. We present hourly-diel-annual dynamics from 2017 to 2020 of irradiance and its relation to weather conditions, sun and moon trajectories.

2.
Commun Biol ; 3(1): 102, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139805

RESUMO

For organisms that remain active in one of the last undisturbed and pristine dark environments on the planet-the Arctic Polar Night-the moon, stars and aurora borealis may provide important cues to guide distribution and behaviours, including predator-prey interactions. With a changing climate and increased human activities in the Arctic, such natural light sources will in many places be masked by the much stronger illumination from artificial light. Here we show that normal working-light from a ship may disrupt fish and zooplankton behaviour down to at least 200 m depth across an area of >0.125 km2 around the ship. Both the quantitative and qualitative nature of the disturbance differed between the examined regions. We conclude that biological surveys in the dark from illuminated ships may introduce biases on biological sampling, bioacoustic surveys, and possibly stock assessments of commercial and non-commercial species.


Assuntos
Comportamento Animal/efeitos da radiação , Peixes/fisiologia , Luz/efeitos adversos , Zooplâncton/fisiologia , Zooplâncton/efeitos da radiação , Animais , Regiões Árticas , Ritmo Circadiano/efeitos da radiação , Clima Frio , Ecossistema , Monitoramento Ambiental , Fotoperíodo , Navios
3.
Curr Biol ; 25(19): 2555-61, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26412132

RESUMO

The current understanding of Arctic ecosystems is deeply rooted in the classical view of a bottom-up controlled system with strong physical forcing and seasonality in primary-production regimes. Consequently, the Arctic polar night is commonly disregarded as a time of year when biological activities are reduced to a minimum due to a reduced food supply. Here, based upon a multidisciplinary ecosystem-scale study from the polar night at 79°N, we present an entirely different view. Instead of an ecosystem that has entered a resting state, we document a system with high activity levels and biological interactions across most trophic levels. In some habitats, biological diversity and presence of juvenile stages were elevated in winter months compared to the more productive and sunlit periods. Ultimately, our results suggest a different perspective regarding ecosystem function that will be of importance for future environmental management and decision making, especially at a time when Arctic regions are experiencing accelerated environmental change [1].


Assuntos
Biodiversidade , Ecossistema , Aquecimento Global , Animais , Regiões Árticas , Estações do Ano
4.
J Plankton Res ; 32(10): 1471-1477, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20824043

RESUMO

We present an accurate, fast, simple and non-destructive photographic method to estimate wax ester and lipid content in single individuals of the calanoid copepod genus Calanus and test this method against gas-chromatographic lipid measurements.

5.
Biol Lett ; 5(1): 69-72, 2009 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-18948249

RESUMO

High-latitude environments show extreme seasonal variation in physical and biological variables. The classic paradigm of Arctic marine ecosystems holds that most biological processes slow down or cease during the polar night. One key process that is generally assumed to cease during winter is diel vertical migration (DVM) of zooplankton. DVM constitutes the largest synchronized movement of biomass on the planet, and is of paramount importance for marine ecosystem function and carbon cycling. Here we present acoustic data that demonstrate a synchronized DVM behaviour of zooplankton that continues throughout the Arctic winter, in both open and ice-covered waters. We argue that even during the polar night, DVM is regulated by diel variations in solar and lunar illumination, which are at intensities far below the threshold of human perception. We also demonstrate that winter DVM is stronger in open waters compared with ice-covered waters. This suggests that the biologically mediated vertical flux of carbon will increase if there is a continued retreat of the Arctic winter sea ice cover.


Assuntos
Migração Animal , Ritmo Circadiano , Zooplâncton/fisiologia , Animais , Regiões Árticas , Ecossistema , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA