Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 136(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37997922

RESUMO

The correct inheritance of chromatin structure is key for maintaining genome function and cell identity and preventing cellular transformation. DEK, a conserved non-histone chromatin protein, has recognized tumor-promoting properties, its overexpression being associated with poor prognosis in various cancer types. At the cellular level, DEK displays pleiotropic functions, influencing differentiation, apoptosis and stemness, but a characteristic oncogenic mechanism has remained elusive. Here, we report the identification of DEK bodies, focal assemblies of DEK that regularly occur at specific, yet unidentified, sites of heterochromatin replication exclusively in late S-phase. In these bodies, DEK localizes in direct proximity to active replisomes in agreement with a function in the early maturation of heterochromatin. A high-throughput siRNA screen, supported by mutational and biochemical analyses, identifies SUMO as one regulator of DEK body formation, linking DEK to the complex SUMO protein network that controls chromatin states and cell fate. This work combines and refines our previous data on DEK as a factor essential for heterochromatin integrity and facilitating replication under stress, and delineates an avenue of further study for unraveling the contribution of DEK to cancer development.


Assuntos
Heterocromatina , Neoplasias , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Cromatina
2.
Stud Health Technol Inform ; 294: 490-494, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35612128

RESUMO

The Robert Koch Institute (RKI) monitors the actual number of COVID-19 patients requiring intensive care from aggregated data reported by hospitals in Germany. So far, there is no infrastructure to make use of individual patient-level data from intensive care units for public health surveillance. Adopting concepts and components of the already established AKTIN Emergency Department Data registry, we implemented the prototype of a federated and distributed research infrastructure giving the RKI access to patient-level intensive care data.


Assuntos
COVID-19 , COVID-19/epidemiologia , Gerenciamento de Dados , Alemanha/epidemiologia , Humanos , Unidades de Terapia Intensiva , Vigilância em Saúde Pública
3.
PLoS One ; 14(8): e0213130, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31408463

RESUMO

DNA replication stress is a major source of genomic instability and is closely linked to tumor formation and progression. Poly(ADP-ribose)polymerases1/2 (PARP1/2) enzymes are activated in response to replication stress resulting in poly(ADP-ribose) (PAR) synthesis. PARylation plays an important role in the remodelling and repair of impaired replication forks, providing a rationale for targeting highly replicative cancer cells with PARP1/2 inhibitors. The human oncoprotein DEK is a unique, non-histone chromatin architectural protein whose deregulated expression is associated with the development of a wide variety of human cancers. Recently, we showed that DEK is a high-affinity target of PARylation and that it promotes the progression of impaired replication forks. Here, we investigated a potential functional link between PAR and DEK in the context of replication stress. Under conditions of mild replication stress induced either by topoisomerase1 inhibition with camptothecin or nucleotide depletion by hydroxyurea, we found that the effect of acute PARP1/2 inhibition on replication fork progression is dependent on DEK expression. Reducing DEK protein levels also overcomes the restart impairment of stalled forks provoked by blocking PARylation. Non-covalent DEK-PAR interaction via the central PAR-binding domain of DEK is crucial for counteracting PARP1/2 inhibition as shown for the formation of RPA positive foci in hydroxyurea treated cells. Finally, we show by iPOND and super resolved microscopy that DEK is not directly associated with the replisome since it binds to DNA at the stage of chromatin formation. Our report sheds new light on the still enigmatic molecular functions of DEK and suggests that DEK expression levels may influence the sensitivity of cancer cells to PARP1/2 inhibitors.


Assuntos
Neoplasias Ósseas/patologia , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Replicação do DNA , Proteínas Oncogênicas/metabolismo , Osteossarcoma/patologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Proteínas Cromossômicas não Histona/genética , Instabilidade Genômica , Humanos , Proteínas Oncogênicas/genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Células Tumorais Cultivadas
4.
Nucleic Acids Res ; 44(21): 10386-10405, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27694308

RESUMO

Genotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e. HeLa cells, via TALEN-mediated gene targeting. After comprehensive characterization of these cells during genotoxic stress, we analyzed structure-function relationships of PARP1 by reconstituting PARP1 KO cells with a series of PARP1 variants. Firstly, we verified that the PARP1\E988K mutant exhibits mono-ADP-ribosylation activity and we demonstrate that the PARP1\L713F mutant is constitutively active in cells. Secondly, both mutants exhibit distinct recruitment kinetics to sites of laser-induced DNA damage, which can potentially be attributed to non-covalent PARP1-PAR interaction via several PAR binding motifs. Thirdly, both mutants had distinct functional consequences in cellular patho-physiology, i.e. PARP1\L713F expression triggered apoptosis, whereas PARP1\E988K reconstitution caused a DNA-damage-induced G2 arrest. Importantly, both effects could be rescued by PARP inhibitor treatment, indicating distinct cellular consequences of constitutive PARylation and mono(ADP-ribosyl)ation. Finally, we demonstrate that the cancer-associated PARP1 SNP variant (V762A) as well as a newly identified inherited PARP1 mutation (F304L\V762A) present in a patient with pediatric colorectal carcinoma exhibit altered biochemical and cellular properties, thereby potentially supporting human carcinogenesis. Together, we establish a novel cellular model for PARylation research, by revealing strong structure-function relationships of natural and artificial PARP1 variants.


Assuntos
Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/química , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Animais , Linhagem Celular , Dano ao DNA , Técnicas de Inativação de Genes , Marcação de Genes , Variação Genética , Células HeLa , Humanos , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes , Deleção de Sequência , Relação Estrutura-Atividade
5.
Oral Maxillofac Surg Clin North Am ; 27(2): 203-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25951957

RESUMO

Dental implant procedures, both surgical placement and preimplant bone augmentation, have become an integral aspect of the oral and maxillofacial surgeon's practice. The number of dental implants placed each year continues to increase as a result of increasing patient exposure and awareness of dental implants, the increased functional and esthetic dental demands of general practitioners and patients, the overall increase in age of the US patient population, and expanded insurance coverage of dental implant-related procedures. This article outlines relevant surgical procedures aimed toward reconstructing alveolar ridge defects to restore intra-arch alveolar discrepancies before restoration-driven dental implant placement.


Assuntos
Perda do Osso Alveolar/cirurgia , Aumento do Rebordo Alveolar/métodos , Implantação Dentária Endóssea/métodos , Implantes Dentários , Humanos
6.
Toxicol Appl Pharmacol ; 231(3): 374-83, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18606429

RESUMO

Congenital hydronephrosis is a serious disease occurring among infants and children. Besides the intrinsic genetic factors, in utero exposure to a xenobiotic, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been suggested to induce hydronephrosis in rodents owing to anatomical obstruction in the ureter. Here, we report that hydronephrosis induced in mouse pups exposed lactationally to TCDD is not associated with anatomical obstruction, but with abnormal alterations in the subepithelial mesenchyma of the ureter. In the kidneys of these pups, the expressions of a battery of inflammatory cytokines including monocyte chemoattractant protein (MCP)-1, tumor necrosis factor alpha (TNFalpha) and interleukin (IL)-1beta were up-regulated as early as postnatal day (PND) 7. The amounts of cyclooxygenase (COX)-2 mRNA and protein as well as prostaglandin E2 (PGE(2)) were conspicuously up-regulated in an arylhydrocarbon-receptor-dependent manner in the TCDD-induced hydronephrotic kidney, with a subsequent down-regulation of the gene expressions of Na+ and K+ transporters, NKCC2 and ROMK. Daily administration of a COX-2 selective inhibitor to newborns until PND 7 completely abrogated the TCDD-induced PGE(2) synthesis and gene expressions of inflammatory cytokines and electrolyte transporters, and eventually prevented the onset of hydronephrosis. These findings suggest an essential role of COX-2 in mediating the TCDD action of inducing hydronephrosis through the functional impairment rather than the anatomical blockade of the ureter.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Hidronefrose/enzimologia , Lactação/metabolismo , Exposição Materna/efeitos adversos , Dibenzodioxinas Policloradas/toxicidade , Animais , Animais Lactentes/metabolismo , Ciclo-Oxigenase 2/fisiologia , Dioxinas/toxicidade , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feminino , Hidronefrose/induzido quimicamente , Hidronefrose/patologia , Lactação/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...