Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Orthop ; 11(1): e12011, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38497044

RESUMO

Purpose: Refixation of acute anterior cruciate ligament (ACL) tears represents an increasingly popular treatment option. Systematic evaluations of various suture technique parameters are still pending. We therefore aimed to evaluate the mechanical pull-out outcomes of various suture methods for optimization of ACL refixation. Methods: Sixty fresh knees from mature domestic pigs were dissected and the femoral attachment of the ACL was peeled off. The 60 knees were divided in 10 groups and sutured as follows: (A) one suture (1, 2, 4 and 6 passes), (B) two sutures (2, 4 and 6 passes each; sutures knotted together as a loop) and (C) two sutures (2, 4 and 6 passes each, sutures knotted separately). The pull-out test was conducted using a validated electrodynamic testing machine. First occurrence of failure, maximum pull-out load and stiffness were measured. Suture failure was defined as pull-out of the ACL. Results: Two-point fixation, using two sutures, with at least two passes, showed the most favourable biomechanical stability. The maximum pull-out load was significantly higher with two sutures (529.5 N) used compared to one (310.4 N), p < 0.001. No significant differences were found for maximum pull-out loads between two-point fixation versus one-point fixation but stiffness was significantly higher with two-point fixation (107.4 N/mm vs. 79.4 N/mm, p < 0.001). More passes resulted in higher maximum pull-out loads. Conclusion: The results suggest using two independent sutures, refixed separately and at least two suture passes, is appropriate for ACL refixation. More suture passes provide additional strength but are technically challenging to achieve during surgery. Level of Evidence: Level IV.

2.
J Funct Biomater ; 15(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38391899

RESUMO

The additive manufacturing of titanium-niobium-tantalum alloys with nominal chemical compositions Ti-xNb-6Ta (x = 20, 27, 35) by means of laser beam powder bed fusion is reported, and their potential as implant materials is elaborated by mechanical and biological characterization. The properties of dense specimens manufactured in different build orientations and of open porous Ti-20Nb-6Ta specimens are evaluated. Compression tests indicate that strength and elasticity are influenced by the chemical composition and build orientation. The minimum elasticity is always observed in the 90° orientation. It is lowest for Ti-20Nb-6Ta (43.2 ± 2.7 GPa) and can be further reduced to 8.1 ± 1.0 GPa for open porous specimens (p < 0.001). Furthermore, human osteoblasts are cultivated for 7 and 14 days on as-printed specimens and their biological response is compared to that of Ti-6Al-4V. Build orientation and cultivation time significantly affect the gene expression profile of osteogenic differentiation markers. Incomplete cell spreading is observed in specimens manufactured in 0° build orientation, whereas widely stretched cells are observed in 90° build orientation, i.e., parallel to the build direction. Compared to Ti-6Al-4V, Ti-Nb-Ta specimens promote improved osteogenesis and reduce the induction of inflammation. Accordingly, Ti-xNb-6Ta alloys have favorable mechanical and biological properties with great potential for application in orthopedic implants.

3.
Biomed Tech (Berl) ; 69(2): 199-209, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37698840

RESUMO

OBJECTIVES: Ceramic revision heads, equipped with titanium adapter sleeves, are used in femoral head revision in total hip arthroplasty to avoid ceramic fracture due to the damaged taper. METHODS: A finite element analysis of the taper connection strength of revision heads with varying head diameters combined with adapter sleeves of different lengths was conducted. The influence of various assembly forces, head diameter, and length of the adapter sleeves was evaluated. For two combinations, the pattern of contact pressure was evaluated when applying a simplified joint load (3 kN, 45° load angle). Experimental validation was conducted with 36 mm heads and adapter sleeves in size S, as well as 28 mm heads and adapter sleeves in size XL. RESULTS: The pull-off force increased with higher assembly forces. Using larger head diameters and adapter sleeves led to decreased pull-off forces, a reduced contact surface, and less contact pressure. The contact pressure showed significant peaks and a diagonal pattern under 45° angle loading when assembly forces were less than 4 kN, and larger adapter sleeves were utilized. CONCLUSION: A sufficient assembly force should be ensured intraoperatively, especially with an increasing head diameter and adapter sleeve size, as lower assembly forces might lead to reduced taper connection strength.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Desenho de Prótese , Software , Cabeça do Fêmur/cirurgia , Computadores , Falha de Prótese
4.
Proc Inst Mech Eng H ; 237(10): 1154-1166, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37747115

RESUMO

Primary stability is crucial for implant osseointegration and the long-term stability of cementless total joint replacements. Biomechanical studies have shown the potential of femoral stems for total knee replacements to reduce micromotions at the bone-implant interface. However, approaches such as focusing on the structural elasticity of the femoral stems are rarely described. Three groups with different femoral stem designs were investigated: group 1: flexible surface stem, group 2: flexible surface stem with open-porous structured lamellas, and group 3: solid stem (reference). The stems were implanted into bone substitute material and dynamically loaded for 1000 cycles. Relative movement and subsidence were measured optically, and axial pull-out forces were determined after dynamic testing. Relative movements increased to 0.10 mm (groups 1 and 2) compared to 0.03 mm (group 3). Subsidence increased to 0.08 mm (group 1) and 0.11 mm (group 2) compared to 0.06 mm (group 3). For each group, subsidence mainly occurred during the first 500 cycles. A similar convergence was observed in the further course. Pull-out forces increased to 1815.0 N (group 1) and 1347.1 N (group 2) compared to 1306.4 N (group 3). The flexible surface stem design resulted in higher relative movements and subsidence, but also exhibited increased pull-out forces. The relative movements were below the critical limit of 0.15 mm and represent a superposition of the elastic deformations of the interacting implant components as well as the micromotion at the bone-implant interface. Therefore, the novel flexible surface stem design appears to offer promising primary implant fixation.


Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Prótese de Quadril , Desenho de Prótese , Osseointegração , Fêmur/cirurgia
5.
J Prosthodont ; 32(4): e71-e80, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35924927

RESUMO

PURPOSE: Zirconium dioxide ceramic has been successfully introduced as a framework material for fixed dental prostheses. To reduce manufacturing constraints, joining of subcomponents could be a promising approach to increase the mechanical performance of long-span fixed dental prostheses. In this experimental study, the biomechanical behavior of monolithic and soldered framework specimens for fixed dental prostheses made of Y-TZP was investigated. MATERIALS AND METHODS: Framework specimens (n = 80) of 5-unit fixed dental prostheses made of Y-TZP were prepared and divided into 10 equal groups. The specimens were monolithic or composed of subcomponents, which were joined using a silicate-based glass solder. Thereby, three joint geometries (diagonal, vertical with an occlusal cap, and dental attachment-based) were investigated. Moreover, the groups differed based on the mechanical test (static vs. dynamic) and further processing (veneered vs. unveneered). The framework specimens were cemented on alumina-based jaw models, where the canine and second molar were acting as abutments before a point-load was applied. In addition, µCT scans and microscopic fractography were used to evaluate the quality of soldered joints and to determine the causes of fracture. RESULTS: The determined fracture loads of the different unveneered framework specimens in static testing did not vary significantly (p = 1). Adding a veneering layer significantly increased the mechanical strength for monolithic framework specimens from 1196.29 ± 203.79 N to 1606.85 ± 128.49 N (p = 0.008). In case of soldered specimens with a dental attachment-based geometry, the mechanical strength increased from 1159.42 ± 85.65 N to 1249.53 ± 191.55 N (p = 1). Within the dynamic testing, no differences were observed between monolithic and soldered framework specimens. µCT scans and fractography proved that the dental attachment-based joining geometry offers the highest quality. CONCLUSION: Using glass soldering technology, subcomponents of 5-unit framework specimens made of Y-TZP could be joined with mechanical properties comparable to those of monolithic frameworks.


Assuntos
Materiais Dentários , Porcelana Dentária , Resistência à Flexão , Falha de Restauração Dentária , Facetas Dentárias , Teste de Materiais , Análise do Estresse Dentário , Cerâmica , Zircônio
6.
Proc Inst Mech Eng H ; : 9544119211070892, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166142

RESUMO

Hip resurfacing arthroplasty is associated with increased frictional moments compared to standard heads owing to their large diameter. High frictional moments may harbor the risk of the implant loosening if the frictional moments exceed the fixation stability of the hip resurfacing arthroplasty. Therefore, the aim of this experimental study was to evaluate the fixation stability of ceramic hip resurfacing implants through a turn-off test. The test specimens, made of alumina toughened zirconia (ATZ) ceramics with an inner titanium-coated surface and square base bodies for better application to the test setup, were pushed on artificial bone materials until a predefined seating depth was achieved. Thereafter, the specimens were turned off from the artificial bone material by using a lever-arm and the turn-off moments were calculated. The density of the artificial bone material utilized (15 and 25 pcf), the press-fit (0.4 and 0.8 mm) and the size of the test specimens varied. The push-on forces ranged from 0.6 ± 0.1 kN to 5.6 ± 0.5 kN depending on the press-fit and artificial bone material. The turn-off moments relied on the respective press-fit, artificial bone material and size of the specimen. They belonged between the range of 8.5 ± 0.4 Nm and 105.4 ± 0.2 Nm. Most of the previously described frictional moments are lower compared to the turn-off moments determined in this study. However, in the worst-case scenario, the turn-off moments of the hip resurfacing implants may be reduced, especially when the adjacent bone stock has a low mineral density.

7.
J Mech Behav Biomed Mater ; 113: 104115, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189013

RESUMO

Femoral bone loss due to stress and strain shielding is a common problem in hip resurfacing arthroplasty (HRA), which arises from the different stiffness of implant materials and the adjacent bone. Usually, the implants used in HRA are made of cobalt-chromium alloy (CoCr). As a novel concept, implants may also be made of ceramics, whose stiffness exceeds that of the adjacent bone by a multiple. Therefore, this computational study aimed to evaluate whether poly (ether-ether-ketone) (PEEK) or a hybrid material with a PEEK body and ceramic surface made of alumina toughened zirconia (ATZ) might be more suitable implant alternatives for HRA, as they can avoid stress and strain shielding. A reconstructed model of a human femur with an HRA implant was simulated, whereby the material of the HRA was varied between CoCr, ATZ, zirconia toughened alumina (ZTA), PEEK, and a hybrid PEEK-ATZ material. The implant fixation method also varied (cemented or cementless). The simulated models were compared with an intact model to analyze stress and strain distribution in the femoral head and neck. The strain distribution was evaluated at a total of 30,344 (cemented HRA) and 63,531 (uncemented HRA) nodes in the femoral head and neck region and divided into different strain regions (<400 µm/m: atrophy; 400-3000 µm/m: bone preserving and building; 3000-20,000 µm/m: yielding and >20,000 µm/m fracture). In addition, the mechanical stability of the implants was evaluated. When the material of the HRA implant was simulated as metal or ceramic while evaluating the strains, it was seen that around 22-26% of the analyzed nodes in the femoral head and neck were in an atrophic region, 47-51% were in a preserving or building region, and 27-28% were in a yielding region. In the case of PEEK implant, less than 0.5% of the analyzed nodes were in an atrophic region, 66-69% in a preserving or building region, and 31-34% in a yielding region. The fixation technique also had a small influence. When a hybrid HRA was simulated, the strains at the analyzed nodes depended on the thickness of the ceramic material. In conclusion, the material of the HRA implant was crucial in terms of stress and strain distribution in the adjacent bone. HRA made of PEEK or a hybrid material leads to decisively reduced stress and strain alteration compared to stiffer materials such as CoCr, ATZ, and ZTA. This confirms the potential for reduction in stress and strain shielding in the femoral head with the use of a hybrid material with a PEEK body for HRA.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Cerâmica , Fêmur/cirurgia , Cabeça do Fêmur/cirurgia , Análise de Elementos Finitos , Humanos , Estresse Mecânico
8.
Materials (Basel) ; 13(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916802

RESUMO

Sufficient primary fixation stability is the basis for the osseointegration of cementless acetabular cups. Several test methods have been established for determining the tilting moment of acetabular press-fit cups, which is a measure for their primary fixation stability. The central aim of this experimental study was to show the differences between the commonly used lever-out test method (Method 1) and the edge-load test method (Method 2) in which the cup insert is axially loaded (1 kN) during the tilting process with respect to the parameters, tilting moment, and interface stiffness. Therefore, using a biomechanical cup block model, a press-fit cup design with a macro-structured surface was pushed into three cavity types (intact, moderate superior defect, and two-point-pinching cavity) made of 15 pcf and 30 pcf polyurethane foam blocks (n = 3 per cavity and foam density combination), respectively. Subsequently, the acetabular cup was disassembled from the three artificial bone cavities using the lever-out and the edge-load test method. Tilting moments determined with Method 1 ranged from 2.73 ± 0.24 Nm to 49.08 ± 1.50 Nm, and with Method 2, they ranged from 41.40 ± 1.05 Nm to 112.72 ± 5.33 Nm. In Method 2, larger areas of abrasion were observed in the artificial bone cavity compared to Method 1. This indicates increased shear forces at the implant-bone interface in the former method. In conclusion, Method 1 simulates the technique used by orthopedic surgeons to assess the correct fit of the trial cup, while Method 2 simulates the tilting of the cup in the acetabular bone cavity under in situ loading with the hip resultant force.

9.
Biomed Res Int ; 2020: 7542062, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509869

RESUMO

BACKGROUND: Modularity finds frequent application in total hip replacement, allowing a preferable individual configuration and a simplified revision by retaining the femoral stem and replacing the prosthetic head. However, micromotions within the interface between the head and the stem taper can arise, resulting in the release of wear debris and corrosion products. The aim of our experimental study was to evaluate the influence of different taper damages on the fixation and fracture stability of ceramic femoral heads, after static and dynamic implant loading. METHODS: Ceramic ball heads (36 mm diameter) and 12/14 stem tapers made of titanium with various mild damage patterns (intact, scratched, and truncated) were tested. The heads were assembled on the taper with a quasistatic load of 2 kN and separated into a static and a dynamic group afterwards. The dynamic group (n = 18) was loaded over 1.5 million gait cycles in a hip wear simulator (ISO 14242-1). In contrast, the static group (n = 18) was not mechanically loaded after assembly. To determine the taper stability, all heads of the dynamic and static groups were either pulled off (ASTM 2009) or turned off (ISO 7206-16). A head fracture test (ISO 7206-10) was also performed. Subsequent to the fixation stability tests, the taper surface was visually evaluated in terms of any signs of wear or corrosion after the dynamic loading. RESULTS: In 10 of the 18 cases, discoloration of the taper was determined after the dynamic loading and subsequent cleaning, indicating the first signs of corrosion. Pull-off forces as well as turn-off moments were increased between 23% and 54% after the dynamic loading compared to the unloaded tapers. No significant influence of taper damage was determined in terms of taper fixation strength. However, the taper damage led to a decrease in fracture strength by approximately 20% (scratched) and 40% (truncated), respectively. CONCLUSION: The results suggest that careful handling and accurate manufacturing of the stem taper are crucial for the ceramic head fracture strength, even though a mild damage showed no significant influence on taper stability. Moreover, our data indicate that a further seating of the prosthetic head may occur during daily activities, when the resulting hip force increases the assembly load.


Assuntos
Artroplastia de Quadril/instrumentação , Cerâmica/química , Prótese de Quadril , Análise de Falha de Equipamento , Resistência à Flexão , Teste de Materiais , Desenho de Prótese
10.
Materials (Basel) ; 13(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197478

RESUMO

In total hip arthroplasty, excessive acetabular cup deformations and altered strain distribution in the adjacent bone are potential risk factors for implant loosening. Materials with reduced stiffness might alter the strain distribution less, whereas shell and liner deformations might increase. The purpose of our current computational study was to evaluate whether carbon fiber-reinforced poly-ether-ether-ketones with a Young´s modulus of 15 GPa (CFR-PEEK-15) and 23 GPa (CFR-PEEK-23) might be an alternative shell material compared to titanium in terms of shell and liner deformation, as well as strain distribution in the adjacent bone. Using a finite element analysis, the press-fit implantation of modular acetabular cups with shells made of titanium, CFR-PEEK-15 and CFR-PEEK-23 in a human hemi-pelvis model was simulated. Liners made of ceramic and polyethylene were simulated. Radial shell and liner deformations as well as strain distributions were analyzed. The shells made of CFR-PEEK-15 were deformed most (266.7 µm), followed by CFR-PEEK-23 (136.5 µm) and titanium (54.0 µm). Subsequently, the ceramic liners were radially deformed by up to 4.4 µm and the polyethylene liners up to 184.7 µm. The shell materials slightly influenced the strain distribution in the adjacent bone with CFR-PEEK, resulting in less strain in critical regions (<400 µm/m or >3000 µm/m) and more strain in bone building or sustaining regions (400 to 3000 µm/m), while the liner material only had a minor impact. The superior biomechanical properties of the acetabular shells made of CFR-PEEK could not be determined in our present study.

11.
Proc Inst Mech Eng H ; 233(9): 883-891, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31210590

RESUMO

Hip resurfacing arthroplasty may have distinct advantages for young and active patients, but large metal-on-metal bearings can be associated with increased wear, adverse tissue reactions and higher rate of implant loosening. Ceramic wear couples are a commonly used alternative to metals and therefore might be an alternative for hip resurfacing arthroplastys. The aim of this study was to evaluate the mechanical strength of femoral components made of an alumina-toughened zirconia composite by means of experimental testing and finite element analysis. For the mechanical characterization, ceramic femoral components (Ø: 48 mm) were tested under compression loading experimentally until fracture occurred or a maximum load of 85 kN was obtained. The femoral components were either loaded against a ceramic cup or a copper ring (outer diameter Ø: 7.0 mm). In addition, the complex geometry of the ceramic femoral component was simplified, and only the stem was loaded in a cantilever test until fracture. In addition, the fracture tests were numerically simulated to investigate the influence of additional loading conditions and geometric parameters, which were not experimentally tested. The experimental data were used for validation of the finite element analysis. None of the tested ceramic femoral components fractured at a compression load of 85 kN when they were loaded against a ceramic cup at an inclination angle of 45°. When the femoral components were loaded against a copper ring, the femoral components fractured at 29.9 kN at a testing angle of 45°. The fracture load was reduced when an angle of 30° and increased when an angle of 60° was simulated. Using an experimental cantilever test, the stem of the femoral component fractured at 1124.0 N. When the stem length was increased or the diameter was reduced by 10% in the finite element analysis, the fracture load was reduced. Decreasing the length or increasing the diameter led to an increase of the fracture load. The strongest influence was found for the reduction of the transition radius of the stem, with a decrease of the fracture load up to 27.2%. The analyzed femoral components made of alumina-toughened zirconia (ATZ) showed sufficient mechanical capability to withstand high loadings during unfavorable loading conditions. However, further biomechanical and tribological investigations are required before clinical application.


Assuntos
Artroplastia de Quadril , Cerâmica/química , Fêmur/cirurgia , Análise de Elementos Finitos , Teste de Materiais , Fenômenos Mecânicos , Óxido de Alumínio/química , Zircônio/química
12.
Comput Methods Biomech Biomed Engin ; 22(1): 25-37, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30449160

RESUMO

Polyurethane (PU) foam is a material often used in biomechanical experiments and demands for the definition of crushable foam plasticity (CFP) in numerical simulations of the primary stability and deformation of implants, to describe the crushing behaviour appropriately. Material data of PU foams with five different densities (10-40 pounds per cubic foot were ascertained experimentally in uniaxial compression test and used to calibrate CFP models for finite element modelling. Additionally, experimental and numerical deformation, push-out and lever-out tests of press-fit acetabular cups were carried out to assess the influence of the chosen material definition (linear elastic and CFP) on the numerical results. Comparison of the experimentally and numerically determined force-displacement curves of the uniaxial compression test showed a mean deviation of less than 3%. In primary stability testing, the deviation between the experimental and numerical results was in a range of 0%-27% for CFP modelling and 64%-341% for the linear elastic model. The material definition selected, highly influenced the numerical results in the current study. The use of a CFP model is recommended for further numerical simulations, when a deformation of the foam beyond the yield strength is likely to occur.


Assuntos
Acetábulo/patologia , Análise de Elementos Finitos , Modelos Biológicos , Poliuretanos/farmacologia , Calibragem , Força Compressiva , Elasticidade , Prótese de Quadril , Humanos , Análise Numérica Assistida por Computador , Reprodutibilidade dos Testes
13.
Proc Inst Mech Eng H ; 232(10): 1030-1038, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30183510

RESUMO

After total hip arthroplasty, stress-shielding is a potential risk factor for aseptic loosening of acetabular cups made of metals. This might be avoided by the use of acetabular cups made of implant materials with lower stiffness. The purpose of this numerical study was to determine whether a modular acetabular cup with a shell made of poly-ether-ether-ketone or poly-ether-ether-ketone reinforced with carbon fibers might be an alternative to conventional metallic shells. Therefore, the press-fit implantation of modular cups with shells made of different materials (Ti6Al4V, poly-ether-ether-ketone, and poly-ether-ether-ketone reinforced with carbon fibers) and varying liner materials (ceramics and ultra-high-molecular-weight polyethylene) into an artificial bone cavity was simulated using finite element analysis. The shell material had a major impact on the radial shell deformation determined at the rim of the shell, ranging from 17.9 µm for titanium over 92.2 µm for poly-ether-ether-ketone reinforced with carbon fibers up to 475.9 µm for poly-ether-ether-ketone. Larger radial liner deformations (up to 618.4 µm) occurred in combination with the shells made of poly-ether-ether-ketone compared to titanium and poly-ether-ether-ketone reinforced with carbon fibers. Hence, it can be stated that conventional poly-ether-ether-ketone is not a suitable shell material for modular acetabular cups. However, the radial shell deformation can be reduced if the poly-ether-ether-ketone reinforced with carbon fiber material is used, while deformation of ceramic liners is similar to the deformation in combination with titanium shells.


Assuntos
Acetábulo , Análise de Elementos Finitos , Prótese de Quadril , Cetonas , Fenômenos Mecânicos , Polietilenoglicóis , Ligas , Benzofenonas , Fenômenos Biomecânicos , Carbono/química , Estudos de Viabilidade , Cetonas/química , Modelos Lineares , Teste de Materiais , Polietilenoglicóis/química , Polímeros , Estresse Mecânico , Titânio/química
14.
J Mech Behav Biomed Mater ; 77: 600-608, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29096126

RESUMO

Coating poly-ether-ether-ketone (PEEK) with rough and porous titanium plasma spray (TPS) coatings is a technique which is commonly used to enhance the osseointegrative properties of medical implants. However, the influence of the TPS coating on the PEEK mechanical properties has not been sufficiently evaluated to date. In this study, PEEK samples were coated with a thick TPS layer with grains of 90µm and 180µm diameter. The coating characteristics and the adhesive strength of the coatings on the samples were determined and compared to coatings on titanium samples. The influence of the coating process on the mechanical and chemical-physical properties of PEEK was also evaluated. All TPS coatings on PEEK and titanium fulfilled the manufacturer's requirements for thickness (200 ± 50µm), porosity (30 ± 10%) and roughness (90µm grain diameter coating: 25 ± 5µm and 180µm grain diameter coating: 45 ± 15µm) and were able to meet the demands required for adhesive strength (> 22MPa) and shear strength (> 20MPa). However, the mechanical properties i.e. yield stress, fracture strain, flexural modulus and flexural stress, of the PEEK samples were influenced by the coating process, while the chemical-physical properties were not altered.


Assuntos
Materiais Revestidos Biocompatíveis , Cetonas/química , Polietilenoglicóis/química , Próteses e Implantes , Titânio/química , Benzofenonas , Varredura Diferencial de Calorimetria , Cromatografia Gasosa , Teste de Materiais , Microscopia Eletrônica de Varredura , Polímeros , Porosidade , Pressão , Resistência ao Cisalhamento , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Propriedades de Superfície , Temperatura , Resistência à Tração
15.
Acta Bioeng Biomech ; 19(3): 155-163, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29205219

RESUMO

PURPOSE: In THA a sufficient primary implant stability is the precondition for successful secondary stability. Industrial foams of different densities have been used for primary stability investigations. The aim of this study was to analyse and compare the insertion behaviour of threaded and press-fit cups in vivo and ex vivo using bone substitutes with various densities. METHODS: Two threaded (Bicon Plus®, Trident® TC) and one press-fit cup (Trident PSL®) were inserted by orthopaedic surgeons (S1, S2) into 10, 20 and 31 pcf blocks, using modified surgical instruments allowing measurements of the insertion forces and torques. Furthermore, the insertion behaviour of two cups were analysed intraoperatively. RESULTS: Torques for the threaded cups increased while bone substitute density increased. Maximum insertion torques were observed for S2 with 102 Nm for the Bicon Plus® in 20 pcf blocks and 77 Nm for the Trident® TC in 31 pcf blocks, which compares to the in vivo measurement (85 Nm). The average insertion forces for the press-fit cup varied from 5.2 to 6.8 kN (S1) and 7.2-11.5 kN (S2) ex vivo. Intraoperatively an average insertion force of 8.0 kN was determined. CONCLUSIONS: Implantation behaviour was influenced by acetabular cup design, bone substitute and experience of the surgeon. No specific density of bone substitute could be favoured for ex vivo investigations on the implantation behaviour of acetabular cups. The use synthetic bone blocks of high density (31 pcf) led to problems regarding cup orientation and seating. Therefore, bone substitutes used should be critically scrutinized in terms of the comparability to the in vivo situation.


Assuntos
Acetábulo/fisiologia , Acetábulo/cirurgia , Artroplastia de Quadril/métodos , Parafusos Ósseos , Prótese de Quadril , Desenho de Equipamento , Análise de Falha de Equipamento , Fricção , Pressão , Estresse Mecânico , Torque
16.
J Arthroplasty ; 32(8): 2580-2586, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28416253

RESUMO

BACKGROUND: Large diameter heads (LDHs) of metal-on-metal bearings in total hip arthroplasty provide increased range of motion and reduced dislocation rates. However, major concerns grew over high wear rates from the modular connection between femoral stem and head, especially in combination with adapter sleeves. METHODS: A computational study on the taper connection stability of LDH (50 mm) with adapter sleeves of different lengths (S, M, L, and XL) compared with a standard femoral head (32 mm) without adapter sleeves was conducted using explicit finite element analyses. Four different impact configurations were considered resulting from varied mallet mass (0.5 vs 1.0 kg) and velocity (1.0 vs 2.0 m/s). The taper stability was evaluated by determination of the pull-off forces and micromotions due to simulated joint loads during walking (2 kN and 7.9 Nm, respectively). Moreover, the deformations of the adapter sleeves and the contact area in the taper connections were evaluated. RESULTS: Although the pull-off forces of the LDH with different-sized adapter sleeves were comparable, contact area decreased and adapter sleeve deformations increased (up to 283%) with an increasing adapter sleeve length. Moreover, the micromotions of LDH with adapter sleeves were up to 7-times higher, as compared with the standard femoral head without an adapter sleeve. CONCLUSION: The present numerical study confirms that the assembly technique of LDH with adapter sleeves reveals increased micromotions compared with standard femoral head sizes. We could demonstrate that deviations of the stem trunnion geometry and improper surgical instructions led to worse mechanical stability of the taper connection.


Assuntos
Artroplastia de Quadril/instrumentação , Prótese de Quadril/estatística & dados numéricos , Modelos Teóricos , Desenho de Prótese , Fêmur/cirurgia , Cabeça do Fêmur/cirurgia , Análise de Elementos Finitos , Humanos , Metais , Amplitude de Movimento Articular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...