Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2198, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272996

RESUMO

Phenols, and especially their nitrated analogues, are ubiquitous pollutants and known carcinogens which have already been linked to forest decline. Although nitrophenols have been widely recognized as harmful to different aquatic and terrestrial organisms, we could not find any literature assessing their toxicity to terrestrial plants. Maize (monocot) and sunflower (dicot) were exposed to phenolic pollutants, guaiacol (GUA) and 4-nitroguaiacol (4NG), through a hydroponics system under controlled conditions in a growth chamber. Their acute physiological response was studied during a two-week root exposure to different concentrations of xenobiotics (0.1, 1.0, and 10 mM). The exposure visibly affected plant growth and the effect increased with increasing xenobiotic concentration. In general, 4NG affected plants more than GUA. Moreover, sunflower exhibited an adaptive response, especially to low and moderate GUA concentrations. The integrity of both plant species deteriorated during the exposure: biomass and photochemical pigment content were significantly reduced, which reflected in the poorer photochemical efficiency of photosystem II. Our results imply that 4NG is taken up by sunflower plants, where it could enter a lignin biosynthesis pathway.


Assuntos
Poluentes Ambientais , Poluentes Ambientais/metabolismo , Guaiacol/química , Plantas/metabolismo
2.
Heliyon ; 9(9): e20215, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809366

RESUMO

Cold plasma (CP) has a great potential for decontamination or improvement of grain germination. However, disputing results have been reported, as plasma treatment can affect species and varieties of grains in different ways. The differences may be due to the chemical composition of grain pericarps, the structure of the grains and metabolic response mechanisms. CP treatment decreased grain germination rate, speed and activity of α-amylase of buckwheat grains. Such effects on both varieties of wheat grains were present after longer exposure to plasma. Lipid peroxidation was highest in buckwheat grains, whereas wheat grains were less affected. Plasma-treated Gorolka variety exhibited a low level of lipid peroxidation, no different to untreated grains, compared to Primorka grains, where longer treatment triggered higher levels of lipid peroxidation. The response of grains to CP treatment depends on the chemical and structural properties of grains pericarp, as well as plant tolerance to certain abiotic conditions.

3.
J Fungi (Basel) ; 9(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37367545

RESUMO

Fungi are the leading cause of plant diseases worldwide and are responsible for enormous agricultural and industrial losses on a global scale. Cold plasma (CP) is a potential tool for eliminating or inactivating fungal contaminants from biological material such as seeds and grains. This study used a low-pressure radiofrequency CP system with oxygen as the feed gas to test the decontamination efficacy of different genera and species commonly colonising buckwheat grains. Two widely accepted methods for evaluating fungal decontamination after CP treatment of seeds were compared: direct cultivation technique or contamination rate method (%) and indirect cultivation or colony-forming units (CFU) method. For most of the tested fungal taxa, an efficient decrease in contamination levels with increasing CP treatment time was observed. Fusarium graminearum was the most susceptible to CP treatment, while Fusarium fujikuroi seems to be the most resistant. The observed doses of oxygen atoms needed for 1-log reduction range from 1024-1025 m-2. Although there was some minor discrepancy between the results obtained from both tested methods (especially in the case of Fusarium spp.), the trends were similar. The results indicate that the main factors affecting decontamination efficiency are spore shape, size, and colouration.

4.
Front Nutr ; 10: 1151101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215205

RESUMO

Increasing the concentration of an element in edible produce (i.e., biofortification) can mitigate the element deficiency in humans. Sprouts are small but popular part of healthy diets providing vitamins and essential elements throughout the year. Element composition of sprouts can easily be amended, e.g., by soaking the grains in element-rich solution before germination (grain-priming). In addition, pre-treatment of grains to improve element translocation from the solution into the grain may further enhance the element concentration in the sprout. Cold plasma technique could provide such solution, as it increases wettability and water uptake of grains. Grains of common buckwheat (Fogopyrum esculentum Moench) were pre-treated/ untreated with cold plasma and soaked in ZnCl2 solution/pure water. Germination tests, α-amylase activity, grain hydrophilic properties and water uptake were assessed. Element composition of grain tissues and of sprouts was assessed by micro-particle-induced-X-ray emission and X-ray fluorescence spectroscopy, respectively. Grain-priming increased Zn concentration in shoots of common buckwheat sprouts more than five-times, namely from 79 to 423 mg Zn kg-1 dry weight. Cold plasma treatment increased grain wettability and water uptake into the grain. However, cold plasma pre-treatment followed by grain-priming with ZnCl2 did not increase Zn concentration in different grain tissues or in the sprouts more than the priming alone, but rather decreased the Zn concentration in sprout shoots (average ± standard error: 216 ± 6.13 and 174 ± 7.57 mg Zn kg-1 dry weight, respectively). When the fresh weight portion of whole sprouts (i.e., of roots and shoots) was considered, comparable average requirements of Zn, namely 24.5 % and 35 % for adult men and women would be satisfied by consuming cold plasma pre-treated and not pre-treated grains. Potential advantages of cold plasma pre-treatment need to be tested further, mainly to optimize the duration of soaking required to produce Zn-enriched sprouts.

5.
Plant Physiol Biochem ; 194: 619-626, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36535101

RESUMO

Olive tree (Olea europaea L.) leaves have recently been recognised as a valuable source in cosmetic and pharmaceutical industry as well as in preparation of health-supporting beverages. Little is known about the element composition of olive leaves and almost nothing about tissue-specific allocation of elements. Element composition and tissue-specific distribution were determined in leaves of two olive cultivars, Leccino and Istarska bjelica using micro-particle induced X-ray emission (micro-PIXE). In leaves of the Istarska bjelica cultivar larger bulk concentrations of potassium, sodium, molybdenum and boron, but smaller concentrations of calcium and magnesium were found than in leaves of the Leccino cultivar. Tissue-specific investigation revealed that larger concentration of calcium in epidermis and in leaf blade tissues (secondary veins, palisade and spongy mesophyll) contributed to the larger leaf bulk calcium concentration in the Leccino cultivar. For magnesium, all leaf tissues, except the bundle sheath cells and consequently the main vascular bundle, contributed to the larger bulk concentration in the Leccino cultivar. Potassium was not predominant in any of the leaf tissues examined, while sodium and molybdenum were below the limit of detection, and boron not detectable by micro-PIXE. The results indicate that sinks for calcium and magnesium are stronger in specific leaf tissues of the Leccino than of the Istarska bjelica cultivar. The new understanding of tissue-specific allocation of elements in leaves of olive will serve as a basis for detailed studies into the effects of foliar and/or soil fertilisers in olive.


Assuntos
Cálcio , Olea , Plântula , Magnésio , Boro , Molibdênio , Sódio , Folhas de Planta
6.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806379

RESUMO

Cold plasma (CP) technology is a technique used to change chemical and morphological characteristics of the surface of various materials. It is a newly emerging technology in agriculture used for seed treatment with the potential of improving seed germination and yield of crops. Wheat seeds were treated with glow (direct) or afterglow (indirect) low-pressure radio-frequency oxygen plasma. Chemical characteristics of the seed surface were evaluated by XPS and FTIR analysis, changes in the morphology of the seed pericarp were analysed by SEM and AFM, and physiological characteristics of the seedlings were determined by germination tests, growth studies, and the evaluation of α-amylase activity. Changes in seed wettability were also studied, mainly in correlation with functionalization of the seed surface and oxidation of lipid molecules. Only prolonged direct CP treatment resulted in altered morphology of the seed pericarp and increased its roughness. The degree of functionalization is more evident in direct compared to indirect CP treatment. CP treatment slowed the germination of seedlings, decreased the activity of α-amylase in seeds after imbibition, and affected the root system of seedlings.


Assuntos
Gases em Plasma , Triticum , Germinação , Gases em Plasma/farmacologia , Plântula , Sementes , Triticum/fisiologia , alfa-Amilases
7.
J Hazard Mater ; 439: 129562, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35868083

RESUMO

Arbuscular mycorrhizal fungi (AMF) exhibit great potential in heavy-metal immobilization in semi-aquatic habitats. Under high heavy-metal stress, however, the role of AMF is limited, and the detoxification mechanism of AMF in heavy metals' stabilization remains unclear. This study investigated the effects of AMF on a wetland plant (Iris pseudacorus) and chromium (Cr) immobilization at different water depths in semi-aquatic habitats with biochar addition. Results showed that AMF increased the physiological and photosynthetic functions in I. pseudacorus under Cr exposures. Besides, AMF alleviated the accumulation of reactive oxygen species and lipid peroxidation by enhancing the antioxidant enzyme activities. AMF and biochar significantly decreased Cr concentrations in outlet water and increased Cr accumulation in I. pseudacorus. Besides, biochar also vastly improved Cr accumulation in the substrate under the fluctuating water depth. AMF reduced Cr bioavailability in the substrate, with Cr (Ⅵ) concentrations and acid-soluble forms of Cr decreased by 0.3-64.5% and 19.0-40.8%, respectively. Micro-proton-induced X-ray emission was used to determine element localization and revealed that AMF improved the nutrients uptake by wetland plants and inhibited Cr translocation from roots to shoots. Overall, this study demonstrated that the interaction between AMF and biochar could significantly enhance the immobilization of high Cr concentrations in semi-aquatic habitats.


Assuntos
Metais Pesados , Micorrizas , Carvão Vegetal , Cromo/toxicidade , Ecossistema , Fungos , Raízes de Plantas/microbiologia , Plantas , Água/farmacologia
8.
Plants (Basel) ; 11(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684178

RESUMO

This study was undertaken to determine the effect of potassium silicate (K2SiO3) on the physiological and growth characteristics and elemental composition of barley plants. Hydroponically grown barley (Hordeum vulgare L.) var. Wilma was exposed to four different levels of Si in the form of K2SiO3 at concentrations of 0 (Si0), 0.5 (Si0.5), 1 (Si1) or 1.5 (Si1.5) mM Si. Plants were analyzed for root length, number of dry leaves, number of trichomes, electron transport system activity in mitochondria (ETS), leaf pigment content and elemental composition of roots and leaves. Treatment with Si0.5 significantly increased the concentration of total chlorophylls, root length and ETS activity in barley. Plants with no Si added to the nutrient solution had significantly more dry leaves than plants from all Si-treated groups. Necrosis was observed in Si0 plants, while leaf damage was not visible in treated plants. According to the results of the study, we evidenced that plants were stressed due to Si deficiency. The addition of K2SiO3 significantly affected the concentration of Si, K, Ca, Cl, S, Mn, Fe and Zn in roots and leaves of barley. In barley treated with Si0.5, plants showed the best performance in terms of their physiological characteristics and growth.

9.
Plants (Basel) ; 11(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631791

RESUMO

Buckwheat is an alternative crop known for its many beneficial effects on our health. Fungi are an important cause of plant diseases and food spoilage, often posing a threat to humans and animals. This study reports the effects of low-pressure cold plasma treatment on decontamination and germination of common (CB) and Tartary buckwheat (TB) grains. Both plasma glow and afterglow were applied. The glow treatment was more effective in decontamination: initial contamination was reduced to less than 30% in CB and 10% in TB. Fungal diversity was also affected as only a few genera persisted after the glow treatment; however, it also significantly reduced or even ceased the germination capacity of both buckwheat species. Detailed plasma characterisation by optical spectroscopy revealed extensive etching of outer layers as well as cotyledons. Afterglow treatment resulted in a lower reduction of initial fungal contamination (up to 30% in CB and up to 50% in TB) and had less impact on fungal diversity but did not drastically affect germination: 60-75% of grains still germinated even after few minutes of treatment. The vacuum conditions alone did not affect the fungal population or the germination despite an extensive release of water.

10.
Methods Mol Biol ; 2447: 233-246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583786

RESUMO

In plants, the response to stress, such as salinity, pathogen attack, drought, high concentration of metals, hyperthermia, and hypothermia, is usually accompanied by potassium ion (K+) leakage from the cytosol to the cell wall, mediated by plasma membrane cation conductivity. Stress-induced electrolyte leakage co-occurs with accumulation of reactive oxygen species (ROS) and calcium ions (Ca2+) and often results in programmed cell death (PCD). The development of X-ray and mass spectrometry (MS) based imaging techniques has enabled insight into the spatial tissue and cell-specific redistribution of major and trace elements during the stress response. In this chapter a workflow for sample preparation, imaging, and image analysis by X-ray and MS based techniques is presented.


Assuntos
Cálcio , Potássio , Apoptose , Cálcio/metabolismo , Íons/metabolismo , Plantas/metabolismo , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
PLoS One ; 17(3): e0263338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35333862

RESUMO

Human hair absorbs numerous biomolecules from the body during its growth. This can act as a fingerprint to determine substance intake of an individual, which can be useful in forensic studies. The cocaine concentration profile along the growth axis of hair indicates the time evolution of the metabolic incorporation of cocaine usage. It could be either assessed by chemical extraction and further analysis of hair bundels, or by direct single hair fibre analysis with mass spectroscopy imaging (MSI). Within this work, we analyzed the cocaine distribution in individual hair samples using MeV-SIMS. Unlike conventional surface analysis methods, we demonstrate high yields of nonfragmented molecular ions from the surface of biological materials, resulting in high chemical sensitivity and non-destructive characterisation. Hair samples were prepared by longitudinally cutting along the axis of growth, leaving half-cylindrical shape to access the interior structure of the hair by the probing ion beam, and attached to the silicon wafer. A focused 5.8 MeV 35Cl6+ beam was scanned across the intact, chemically pristine hair structure. A non-fragmented protonated [M+ H]+ cocaine molecular peak at m/z = 304 was detected and localized along the cross-section of the hair. Its intensity exhibits strong fluctuations along the direction of the hair's growth, with pronounced peaks as narrow as 50 micrometres, corresponding to a metabolic incorporation time of approx. three hours.


Assuntos
Cocaína , Cabelo/química , Análise do Cabelo , Humanos , Espectrometria de Massas , Imagem Molecular , Detecção do Abuso de Substâncias/métodos
12.
Nanomaterials (Basel) ; 12(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269232

RESUMO

TiO2 nanoparticles (TiO2-NPs) have a wide range of industrial applications (paintings, sunscreens, food and cosmetics) and is one of the most intensively used nanomaterials worldwide. Leaching from commercial products TiO2-NPs are predicted to significantly accumulate in wastewater sludges, which are then often used as soil amendment. In this work, sludge samples from four wastewater treatment plants of the Chihuahua State in Mexico were obtained during spring and summer (2017). A comprehensive characterization study was performed by X-ray based (laboratory and synchrotron) techniques and electron microscopy. Ti was detected in all sludge samples (1810-2760 mg/kg) mainly as TiO2 particles ranging from 40 nm up to hundreds of nm. Micro-XANES data was analyzed by principal component analysis and linear combination fitting enabling the identification of three predominant Ti species: anatase, rutile and ilmenite. Micro-XANES from the smaller Ti particles was predominantly anatase (68% + 32% rutile), suggesting these TiO2-NPs originate from paintings and cosmetics. TEM imaging confirmed the presence of nanoscale Ti with smooth surface morphologies resembling engineered TiO2-NPs. The size and crystalline phase of TiO2-NPs in the sludge from this region suggest increased reactivity and potential toxicity to agro-systems. Further studies should be dedicated to evaluating this.

13.
Foods ; 11(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35327271

RESUMO

The microalgae Spirulina may be a popular dietary supplement rich in essential nutrients and vitamins, but oversight of the supplement industry, in general, remains limited, and increasing incidents of adulteration, misbranding, and undeclared ingredients together with misleading claims create potential risks. In response, this study characterized the elemental, amino acid and fatty acid content of commercially available Spirulina supplements in Slovenia using EDXRF, ICP-MS and GC-MS and compared the results with their nutritional declaration. The gathered data confirm that Spirulina supplements are a good source of calcium (0.15 to 29.5% of RDA), phosphorous (3.36-26.7% of RDA), potassium (0.5 to 7.69% of RDA) and selenium (0.01 to 38.6% of RDA) when consumed within recommended amounts. However, although iron contents were relatively high (7.64 to 316% of RDA), the actual bioavailability of iron was much lower since it was mainly present as the ferric cation. This study also confirms that pure Spirulina supplements are a good source of essential and non-essential amino acids, and ω-6 but not ω-3 polyunsaturated fatty acids. The presence of additives resulted in significant variation in nutrient content and, in some instances, lower product quality. Moreover, a high proportion (86.7%) of inappropriate declarations regarding the elemental content was observed. Overall, the study conclusions underline the need for a stricter control system for Spirulina-based supplements.

14.
J Fungi (Basel) ; 7(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34436189

RESUMO

In view of the ever-growing human population and global environmental crisis, new technologies are emerging in all fields of our life. In the last two decades, the development of cold plasma (CP) technology has offered a promising and environmentally friendly solution for addressing global food security problems. Besides many positive effects, such as promoting seed germination, plant growth, and development, CP can also serve as a surface sterilizing agent. It can be considered a method for decontamination of microorganisms on the seed surface alternative to the traditional use of fungicides. This review covers basics of CP technology and its application in seed decontamination. As this is a relatively young field of research, the data are scarce and hard to compare due to various plasma setups and parameters. On the other hand, the rapidly growing research field offers opportunities for novel findings and applications.

15.
Ecotoxicol Environ Saf ; 222: 112493, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34265529

RESUMO

The contribution of 1,8-dihydroxy naphthalene (DHN) melanin to cadmium (Cd) tolerance in two dark septate endophytes (DSE) of the genus Cadophora with different melanin content was investigated in vitro. The DSE isolate Cad#148 with higher melanin content showed higher tolerance to Cd than the less melanised Cad#149. Melanin synthesis was significantly reduced by Cd in both isolates with uninhibited melanin synthesis, in a dose-dependent manner. Inhibition of melanin synthesis by tricyclazole reduced the relative growth of Cad#148 exposed to Cd and did not affect Cad#149. Cd accumulation was not altered by tricyclazole in the two isolates, but it increased catalase and reduced glutathione reductase activity in more melanised Cad#148, indicating higher stress levels. In contrast, in Cad#149 the enzyme activity was less affected by tricyclazole, indicating a more pronounced role of melanin-independent Cd tolerance mechanisms. Cd ligand environment in fungal mycelia was analysed by extended EXAFS (X-ray absorption fine structure). It revealed that Cd was mainly bound to O- and S-ligands, including hydroxyl, carboxyl, phosphate and thiol groups. A similar proportion of S- and O- ligands (~35% and ~65%) were found in both isolates with uninhibited melanin synthesis. Among O-ligands two types with Cd-O-C- and Cd-O-P- coordination were identified. Tricyclazole altered Cd-O- ligand environment in both fungal isolates by reducing the proportion of Cd-O-C- and increasing the proportion of Cd-O-P coordination. DHN-melanin, among other tolerance mechanisms, significantly contributes to Cd tolerance in more melanised DSE fungi by immobilising Cd to hydroxyl groups and maintaining the integrity of the fungal cell wall.


Assuntos
Cádmio , Endófitos , Antioxidantes , Cádmio/toxicidade , Melaninas , Naftalenos
16.
J Neurochem ; 159(3): 554-573, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34176164

RESUMO

Regional iron accumulation and α-synuclein (α-syn) spreading pathology within the central nervous system are common pathological findings in Parkinson's disease (PD). Whereas iron is known to bind to α-syn, facilitating its aggregation and regulating α-syn expression, it remains unclear if and how iron also modulates α-syn spreading. To elucidate the influence of iron on the propagation of α-syn pathology, we investigated α-syn spreading after stereotactic injection of α-syn preformed fibrils (PFFs) into the striatum of mouse brains after neonatal brain iron enrichment. C57Bl/6J mouse pups received oral gavage with 60, 120, or 240 mg/kg carbonyl iron or vehicle between postnatal days 10 and 17. At 12 weeks of age, intrastriatal injections of 5-µg PFFs were performed to induce seeding of α-syn aggregates. At 90 days post-injection, PFFs-injected mice displayed long-term memory deficits, without affection of motor behavior. Interestingly, quantification of α-syn phosphorylated at S129 showed reduced α-syn pathology and attenuated spreading to connectome-specific brain regions after brain iron enrichment. Furthermore, PFFs injection caused intrastriatal microglia accumulation, which was alleviated by iron in a dose-dependent way. In primary cortical neurons in a microfluidic chamber model in vitro, iron application did not alter trans-synaptic α-syn propagation, possibly indicating an involvement of non-neuronal cells in this process. Our study suggests that α-syn PFFs may induce cognitive deficits in mice independent of iron. However, a redistribution of α-syn aggregate pathology and reduction of striatal microglia accumulation in the mouse brain may be mediated via iron-induced alterations of the brain connectome.


Assuntos
Química Encefálica , Ferro/farmacologia , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade , Animais , Animais Recém-Nascidos , Conectoma , Corpo Estriado , Relação Dose-Resposta a Droga , Feminino , Humanos , Ferro/administração & dosagem , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/psicologia , Camundongos Endogâmicos C57BL , Microglia/patologia , Microinjeções , Atividade Motora/efeitos dos fármacos , alfa-Sinucleína/administração & dosagem
17.
Plants (Basel) ; 10(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922511

RESUMO

Crop seeds are frequently colonised by fungi from the field or storage places. Some fungi can cause plant diseases or produce mycotoxins, compromising the use of seeds as seeding material, food or feed. We have investigated the effects of cold plasma (CP) on seed germination and diversity of seed-borne fungi in common and Tartary buckwheat. The seeds were treated with CP for 15, 30, 45, 60, 90, and 120 s in a low-pressure radiofrequency system using oxygen as the feed gas. The fungi from the seed surface and fungal endophytes were isolated using potato dextrose agar plates. After identification by molecular methods, the frequency and diversity of fungal strains were compared between CP treated and chemically surface-sterilised (30% of H2O2) seeds. CP treatments above 60 s negatively affected the germination of both buckwheat species. A significant reduction in fungal frequency and diversity was observed after 90 s and 120 s in common and Tartary buckwheat, respectively. The filamentous fungi of genera Alternaria and Epicoccum proved to be the most resistant to CP. The results of our study indicate that CP treatment used in our study may be applicable in postharvest and food production, but not for further seed sowing.

18.
Plant Physiol ; 186(3): 1616-1631, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831190

RESUMO

Magnesium (Mg) and calcium (Ca) are essential mineral nutrients poorly supplied in many human food systems. In grazing livestock, Mg and Ca deficiencies are costly welfare issues. Here, we report a Brassica rapa loss-of-function schengen3 (sgn3) mutant, braA.sgn3.a-1, which accumulates twice as much Mg and a third more Ca in its leaves. We mapped braA.sgn3.a to a single recessive locus using a forward ionomic screen of chemically mutagenized lines with subsequent backcrossing and linked-read sequencing of second back-crossed, second filial generation (BC2F2) segregants. Confocal imaging revealed a disrupted root endodermal diffusion barrier, consistent with SGN3 encoding a receptor-like kinase required for normal formation of Casparian strips, as reported in thale cress (Arabidopsis thaliana). Analysis of the spatial distribution of elements showed elevated extracellular Mg concentrations in leaves of braA.sgn3.a-1, hypothesized to result from preferential export of excessive Mg from cells to ensure suitable cellular concentrations. This work confirms a conserved role of SGN3 in controlling nutrient homeostasis in B. rapa, and reveals mechanisms by which plants are able to deal with perturbed shoot element concentrations resulting from a "leaky" root endodermal barrier. Characterization of variation in leaf Mg and Ca accumulation across a mutagenized population of B. rapa shows promise for using such populations in breeding programs to increase edible concentrations of essential human and animal nutrients.


Assuntos
Brassica rapa/genética , Brassica rapa/metabolismo , Cálcio/análise , Cálcio/metabolismo , Genes Recessivos , Magnésio/análise , Magnésio/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação , Folhas de Planta/genética , Folhas de Planta/metabolismo
19.
Plants (Basel) ; 11(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35009094

RESUMO

Due to climate change, plants are being more adversely affected by heatwaves, floods, droughts, and increased temperatures and UV radiation. This review focuses on enhanced UV-B radiation and drought, and mitigation of their adverse effects through silicon addition. Studies on UV-B stress and addition of silicon or silicon nanoparticles have been reported for crop plants including rice, wheat, and soybean. These have shown that addition of silicon to plants under UV-B radiation stress increases the contents of chlorophyll, soluble sugars, anthocyanins, flavonoids, and UV-absorbing and antioxidant compounds. Silicon also affects photosynthesis rate, proline content, metal toxicity, and lipid peroxidation. Drought is a stress factor that affects normal plant growth and development. It has been frequently reported that silicon can reduce stress caused by different abiotic factors, including drought. For example, under drought stress, silicon increases ascorbate peroxidase activity, total soluble sugars content, relative water content, and photosynthetic rate. Silicon also decreases peroxidase, catalase, and superoxide dismutase activities, and malondialdehyde content. The effects of silicon on drought and concurrently UV-B stressed plants has not yet been studied in detail, but initial studies show some stress mitigation by silicon.

20.
Plants (Basel) ; 9(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316909

RESUMO

Nonthermal plasma (NTP), or cold plasma, has shown many advantages in the agriculture sector as it enables removal of pesticides and contaminants from the seed surface, increases shelf life of crops, improves germination and resistance to abiotic stress. Recent studies show that plasma treatment indeed offers unique and environmentally friendly processing of different seeds, such as wheat, beans, corn, soybeans, barley, peanuts, rice and Arabidopsis thaliana, which could reduce the use of agricultural chemicals and has a high potential in ecological farming. This review covers the main concepts and underlying principles of plasma treatment techniques and their interaction with seeds. Different plasma generation methods and setups are presented and the influence of plasma treatment on DNA damage, gene expression, enzymatic activity, morphological and chemical changes, germination and resistance to stress, is explained. Important plasma treatment parameters and interactions of plasma species with the seed surface are presented and critically discussed in correlation with recent advances in this field. Although plasma agriculture is a relatively new field of research, and the complex mechanisms of interactions are not fully understood, it holds great promise for the future. This overview aims to present the advantages and limitations of different nonthermal plasma setups and discuss their possible future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...