Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 890852, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573692

RESUMO

Evolutionary studies indicate that the nervous system evolved prior to the vascular system, but the increasing complexity of organisms prompted the vascular system to emerge in order to meet the growing demand for oxygen and nutrient supply. In recent years, it has become apparent that the symbiotic communication between the nervous and the vascular systems goes beyond the exclusive covering of the demands on nutrients and oxygen carried by blood vessels. Indeed, this active interplay between both systems is crucial during the development of the central nervous system (CNS). Several neural-derived signals that initiate and regulate the vascularization of the CNS have been described, however less is known about the vascular signals that orchestrate the development of the CNS cytoarchitecture. Here, we focus on reviewing the effects of blood vessels in the process of neurogenesis during CNS development in vertebrates. In mammals, we describe the spatiotemporal features of vascular-driven neurogenesis in two brain regions that exhibit different neurogenic complexity in their germinal zone, the hindbrain and the forebrain.

2.
Science ; 370(6518): 844-848, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33184213

RESUMO

The sensory neocortex is a critical substrate for memory. Despite its strong connection with the thalamus, the role of direct thalamocortical communication in memory remains elusive. We performed chronic in vivo two-photon calcium imaging of thalamic synapses in mouse auditory cortex layer 1, a major locus of cortical associations. Combined with optogenetics, viral tracing, whole-cell recording, and computational modeling, we find that the higher-order thalamus is required for associative learning and transmits memory-related information that closely correlates with acquired behavioral relevance. In turn, these signals are tightly and dynamically controlled by local presynaptic inhibition. Our results not only identify the higher-order thalamus as a highly plastic source of cortical top-down information but also reveal a level of computational flexibility in layer 1 that goes far beyond hard-wired connectivity.


Assuntos
Aprendizagem por Associação/fisiologia , Córtex Auditivo/fisiologia , Memória/fisiologia , Tálamo/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/fisiologia , Vias Neurais/fisiologia , Optogenética , Técnicas de Patch-Clamp , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...