Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 24(6): 921-931, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35583028

RESUMO

There are large knowledge gaps concerning concentrations, sources, emissions, and spatial trends of mercury (Hg) in the atmosphere in developing regions of the Southern Hemisphere, particularly in urban areas. Filling these gaps is a prerequisite for assessing the effectiveness of international regulation and for enabling a better understanding of the global transport of Hg in the environment. Here we use a passive sampling technique to study the spatial distribution of gaseous elemental Hg (Hg(0), GEM) and assess emission sources in and around Dar es Salaam, Tanzania's largest city. Included in the study were the city's main municipal waste dumpsite and an e-waste processing facility as potential sources of GEM. To complement the GEM data and for a better overview of the Hg contamination status of Dar es Salaam, soil samples were collected from the same locations where passive air samplers were deployed and analysed for total Hg. Overall, GEM concentrations ranged between <0.86 and 5.34 ng m-3, indicating significant local sources within the urban area. The municipal waste dumpsite and e-waste site had GEM concentrations elevated above the background, at 2.41 and 1.77 ng m-3, respectively. Hg concentrations in soil in the region (range 0.0067 to 0.098 mg kg-1) were low compared to those of other urban areas and were not correlated with atmospheric GEM concentrations. This study demonstrates that GEM is a significant environmental issue in the urban region of Dar es Salaam. Further studies from urban areas in the Global South are needed to better identify sources of GEM.


Assuntos
Poluentes Atmosféricos , Mercúrio , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Mercúrio/análise , Solo , Tanzânia
2.
Environ Pollut ; 292(Pt A): 118298, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626702

RESUMO

There are large knowledge gaps concerning environmental levels and fate of many organic pollutants, particularly for chemicals of emerging concern in tropical regions of the Global South. In this study, we investigated the levels of chlorinated paraffins (CPs) and dechloranes in air and soil in rural, suburban, and urban regions in and around Dar es Salaam, Tanzania. Samples were also collected near the city's main municipal waste dumpsite and an electronic waste (e-waste) handling facility. In passive air samples, short chain CPs (SCCPs) dominated, with an average estimated concentration of 22 ng/m3, while medium chain CPs (MCCPs) had an average estimated concentration of 9 ng/m3. The average estimated air concentration of ∑dechloranes (Dechlorane Plus (DP) + Dechlorane 602 + Dechlorane 603) was three to four orders of magnitudes lower, 2 pg/m3. In soil samples, MCCPs dominated with an average concentration of 640 ng/g dw, followed by SCCPs with an average concentration of 330 ng/g dw, and ∑dechloranes with an average concentration of 0.9 ng/g dw. In both air and soil, DP was the dominating dechlorane compound. Urban pulses were observed for CPs and dechloranes in air and soil. CPs were in addition found in elevated levels at the municipal waste dumpsite and the e-waste handling facility, while DPs were found in elevated levels at the e-waste handling facility. This suggests that waste handling sites represent important emission sources for these pollutants. Investigations into seasonal trends and environmental fate of CPs and dechloranes showed that monsoonal rain patterns play a major role in governing air concentrations and mobility, particularly for the less volatile MCCPs and dechloranes. This study is the first to report levels of CPs in air from sub-Saharan Africa, and DP, Dechlorane 602, and Dechlorane 603 in soil from sub-Saharan Africa.


Assuntos
Hidrocarbonetos Clorados , Parafina , China , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Parafina/análise , Solo , Tanzânia
3.
Environ Sci Pollut Res Int ; 28(43): 60857-60880, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34165747

RESUMO

This study assesses the occurrence of trace elements (TEs) in sediments of the southern Caspian Sea. A total of 16 shoreline sediment samples and 15 seabed sediment samples along five coastal transects were studied. The mean concentration of TEs follows the order of Zn > V > Cr > Ni > Cu > Pb > Co > As > Sb > Mo > Cd. The TEs had an uneven, heterogeneous distribution within the shoreline and seabed sampling sites. This is due to that the study area comprises a large number of different pollution sources, also different sediment physicochemical characteristics. Levels of individual TEs within the seabed sediment transects were higher where their shoreline sites had higher concentrations, reflecting that the coastal sites play an important role in diffusing the contaminants towards the sea. The main anthropogenic source of TEs in this highly populated region, especially in the western part, is likely a large number of discharge points of greywater entering the sea. In addition, dominant fishing industry, tourism, intense agriculture, and textile and paper industry, as well as several other commercial activities, contribute significantly to the overall loading of TEs. Based on the statistical analyses, the organic matter and mud fraction had a strong explanatory value for the spatial variation of Cu, while oxyhydroxides of Fe and Mn had good explanatory factors to govern the spatial variation of other TEs. Pb and Zn had a relatively high partition coefficient (Kd), reflecting the affinity of these elements to be sorbed to the sediment phase. Cd and Sb had lower Kd, tending to remain in the aqueous phase. Geochemical indices indicated high enrichment of Cd, Sb, Zn, and Pb at a number of sampling sites, reflecting potential local sources of contamination. The Sisangan recreational area was identified as the most contaminated site. From a public health perspective, the non-carcinogenic risk of TEs was significant only at this site. The carcinogenic risks of Pb(II) and As(III) in adults, and Pb(II), Cd(II), and As(III) in children, were tolerable.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Adulto , Mar Cáspio , Criança , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Metais Pesados/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise
4.
Ecotoxicol Environ Saf ; 206: 111137, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32858324

RESUMO

This study assesses the occurrence of microplastics (MPs) in coastal and sea surface sediments, as well as water samples, collected from the coastal region of the southern Caspian Sea, Mazandaran province, Iran. A total of 32 sediment and 10 water samples were studied. The mean concentration of MPs was 15 units kg-1 in the sediments and 710 units m-3 in the coastal water. Fibers constituted by far the dominant MPs in both media, accounting for 97% of the MPs in both sediment and water samples. The MPs were mainly black in color. The dominant size of MP particles in sediment samples was between 250 and 500 µm, while the fraction >1000 µm dominated in the water samples. Polyethylene terephthalate (PET), polystyrene (PS), and nylon (NYL) were the main polymers and/or copolymers composing MPs in both sediment and water samples. The MP particles had a relatively smooth surface morphology, although signs of weathering were observed. The number of MP particles in sediment and water samples showed a general decrease from west to east in the study area. This may be reflecting the spreading of MP loading from the outlets of Sefidrud, Tonekabon, Chalus, the major rivers entering the Caspian Sea just west of the study area, and the overall decrease in the spatial distribution of touristic and fishery activity. The main sources of MP particles could be local emissions from a large number of domestic wastewater effluents and urban surface runoff due to high population density, and industrial and fishing activities in this region. This study indicated that MP particles, based on their characteristics and chemical composition, are circulated between coastal waters, and shore and sea surface sediments of the Caspian Sea, leading to their uneven distribution in the different depths. To the best of our knowledge, this is the first work studying the distribution of MP particles in sea surface sediments and also the most comprehensive on MPs in shoreline sediments and coastal waters in the southern Caspian Sea.


Assuntos
Sedimentos Geológicos/química , Microplásticos/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Mar Cáspio , Monitoramento Ambiental , Irã (Geográfico) , Microplásticos/química , Plásticos/análise , Plásticos/química , Rios/química , Águas Residuárias/química , Poluentes Químicos da Água/química
5.
Sci Total Environ ; 702: 134700, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733553

RESUMO

Anthropogenic nanoparticles (NPs) are emitted to the environment and may be present in vegetables for human consumption. However, the toxicity of NPs exposure through food lack systematical investigations. In order to propose a systematical study, lettuce grown in a Cerium- (IV), Copper- (II) and Zinc oxide NP contaminated environment were digested. This digestate was used to culture human intestine cells (i.e. epithelial colorectal adenocarcinoma cells, Caco-2). The basolateral juice produced by the intestinal cells was then used to culture normal human liver (HL-7702) cells. Bioavailability and biotoxicity of the NPs in the vitro models were assessed. NPs were found to be taken up from the environment by vegetables, and may thus be transferred to humans through oral exposure. Bioavailability and the effect of their concentration in the digestate medium differed in regards to NP materials. The levels of NPs found in the digestate were detrimental to intestine cells, while the liver cells exposed to lower concentrations of NP in the bodily fluid showed no statically significant change in cell necrosis. A closer assessment of the detrimental effect of the studied NPs to Caco-2 cells revealed that the damage was mainly related to the solubility of the NPs. This may partly be due to that the more soluble NP material (ZnO > CuO > CeO2) render higher metal ion release and thus higher bioavailability. This appeared to cause more cell death, and even lead to local intestinal inflammation. Although no liver cells died, there was an increase of ROS level, causing ROS-related DNA damage prior to cell necrosis. The findings in this study enhances our understanding of the relative detrimental effect of different types of NPs, and the mechanisms causing their biotoxicity in human cells through food.


Assuntos
Nanopartículas Metálicas/toxicidade , Disponibilidade Biológica , Células CACO-2 , Cério/toxicidade , Cobre/toxicidade , Dano ao DNA , Humanos , Fígado , Testes de Toxicidade , Óxido de Zinco/toxicidade
6.
Glob Chang Biol ; 24(2): e617-e626, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29171128

RESUMO

Nitrous oxide (N2 O) is a greenhouse gas that also plays the primary role in stratospheric ozone depletion. The use of nitrogen fertilizers is known as the major reason for atmospheric N2 O increase. Empirical bottom-up models therefore estimate agricultural N2 O inventories using N loading as the sole predictor, disregarding the regional heterogeneities in soil inherent response to external N loading. Several environmental factors have been found to influence the response in soil N2 O emission to N fertilization, but their interdependence and relative importance have not been addressed properly. Here, we show that soil pH is the chief factor explaining regional disparities in N2 O emission, using a global meta-analysis of 1,104 field measurements. The emission factor (EF) of N2 O increases significantly (p < .001) with soil pH decrease. The default EF value of 1.0%, according to IPCC (Intergovernmental Panel on Climate Change) for agricultural soils, occurs at soil pH 6.76. Moreover, changes in EF with N fertilization (i.e. ΔEF) is also negatively correlated (p < .001) with soil pH. This indicates that N2 O emission in acidic soils is more sensitive to changing N fertilization than that in alkaline soils. Incorporating our findings into bottom-up models has significant consequences for regional and global N2 O emission inventories and reconciling them with those from top-down models. Moreover, our results allow region-specific development of tailor-made N2 O mitigation measures in agriculture.


Assuntos
Mudança Climática , Óxido Nitroso/química , Solo/química , Agricultura , Fertilizantes , Nitrogênio
7.
Sci Rep ; 5: 11941, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26150000

RESUMO

Chemical weathering is a fundamental geochemical process regulating the atmosphere-land-ocean fluxes and earth's climate. It is under natural conditions driven primarily by weak carbonic acid that originates from atmosphere CO2 or soil respiration. Chemical weathering is therefore assumed as positively coupled with its CO2 consumption in contemporary geochemistry. Strong acids (i.e. sulfuric- and nitric acid) from anthropogenic sources have been found to influence the weathering rate and CO2 consumption, but their integrated effects remain absent in the world largest river basins. By interpreting the water chemistry and overall proton budget in the Yangtze Basin, we found that anthropogenic acidification had enhanced the chemical weathering by 40% during the past three decades, leading to an increase of 30% in solute discharged to the ocean. Moreover, substitution of carbonic acid by strong acids increased inorganic carbon evasion, offsetting 30% of the CO2 consumption by carbonic weathering. Our assessments show that anthropogenic loadings of sulfuric and nitrogen compounds accelerate chemical weathering but lower its CO2 sequestration. These findings have significant relevance to improving our contemporary global biogeochemical budgets.

8.
Environ Sci Process Impacts ; 17(4): 711-27, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25789463

RESUMO

Long-term laborious and thus costly monitoring of phosphorus (P) fractions is required in order to provide reasonable estimates of the levels of bioavailable phosphorus for eutrophication studies. A practical solution to this problem is the application of passive samplers, known as Diffusive Gradient in Thin films (DGTs), providing time-average concentrations. DGT, with the phosphate adsorbent Fe-oxide based binding gel, is capable of collecting both orthophosphate and low molecular weight organic phosphorus (LMWOP) compounds, such as adenosine monophosphate (AMP) and myo-inositol hexakisphosphate (IP6). The diffusion coefficient (D) is a key parameter relating the amount of analyte determined from the DGT to a time averaged ambient concentration. D at 20 °C for AMP and IP6 were experimentally determined to be 2.9 × 10(-6) cm(2) s(-1) and 1.0 × 10(-6) cm(2) s(-1), respectively. Estimations by conceptual models of LMWOP uptake by DGTs indicated that this fraction constituted more than 75% of the dissolved organic phosphorus (DOP) accumulated. Since there is no one D for LMWOP, a D range was estimated through assessment of D models. The models tested for estimating D for a variety of common LMWOP molecules proved to be still too uncertain for practical use. The experimentally determined D for AMP and IP6 were therefore used as upper and lower D, respectively, in order to estimate minimum and maximum ambient concentrations of LMWOP. Validation of the DGT data was performed by comparing concentrations of P fractions determined in natural water samples with concentration of P fractions determined using DGT. Stream water draining three catchments with different land-use (forest, mixed and agriculture) showed clear differences in relative and absolute concentrations of dissolved reactive phosphorus (DRP) and dissolved organic P (DOP). There was no significant difference between water sample and DGT DRP (p > 0.05). Moreover, the upper and lower limit D for LMWOP proved reasonable as water sample determined DOP was found to lie in-between the limits of DGT LMWOP concentrations, indicating that on average DOP consists mainly of LMWOP. "Best fit" D was determined for each stream in order to practically use the DGTs for estimating time average DOP. Applying DGT in a eutrophic lake provided insight into P cycling in the water column.


Assuntos
Monitoramento Ambiental/métodos , Fósforo/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/instrumentação , Água Doce/química , Sedimentos Geológicos/química , Peso Molecular
9.
Chemosphere ; 114: 84-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25113187

RESUMO

An assessment in China of the application of a transportable indirect thermal dryer unit for the remediation of soils contaminated with polychlorinated biphenyls (PCBs) demonstrated that it is well suited to remove PCBs from soils. A remarkable reduction of total PCBs in soils from 163-770 µg g(-1) to 0.08-0.15 µg g(-1) was achieved. This represented removal efficiencies of greater than 99.9% and an approximate 100% removal of the toxic equivalent of the PCBs. Furthermore, the emissions to the atmosphere from the unit were in compliance with current PCBs regulations. In conclusion, remediation of PCBs-contaminated soils based on a transportable indirect thermal dryer unit appears to be a highly efficient and environmentally sound treatment technology that has huge implications for cleaning thousands of regionally dispersed sites of PCBs contamination in China.


Assuntos
Recuperação e Remediação Ambiental/instrumentação , Bifenilos Policlorados/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Solo/química , Ar/análise , China , Bifenilos Policlorados/análise , Poluentes do Solo/análise
10.
Sci Total Environ ; 443: 31-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23178888

RESUMO

Receptor models are useful tools to identify sources of a specific pollutant and to estimate the quantitative contributions of each source based on environmental data. This paper reports on similarities and differences in results achieved when testing three receptor models for estimating the sources of polycyclic aromatic hydrocarbons (PAHs) in soils from Huanghuai Plain, China. The three tested models are Principal Component Analysis with Multiple Linear Regression (PCA-MLR), Positive Matrix Factorization (PMF) and Unmix. Overall source contributions as well as modeled ∑PAHs concentrations compared well among models. All three models apportioned three common PAH sources: wood/biomass burning, fossil fuel combustion and traffic emission, which contributed on average 27.7%, 53.0% and 19.3% by PCA-MLR, 36.9%, 27.2% and 16.3% by PMF, and 47.8%, 21.1% and 18.3% by Unmix to the total sum of PAHs (∑PAHs), respectively. Moreover, the spatial evolution of the common sources were well correlated among models (r=0.83-0.99, p<0.001). In addition, the PMF and Unmix models allowed segregating an additional source from the fossil fuel combustion source, with 19.6% and 11.8% contributions to ∑PAHs, respectively. The current findings further validate that different receptor models provide divergent source profiles, which are mainly attributed to both the model itself and/or the underlying dataset. It is therefore generally recommended to apply multiple techniques to determine the source apportionment in order to minimize individual-method weaknesses and thereby to strengthen the conclusion.


Assuntos
Modelos Teóricos , Compostos Policíclicos/análise , Poluentes do Solo/análise , China , Cromatografia Gasosa , Análise de Componente Principal , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...