Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Obes (Lond) ; 35(2): 217-25, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20603627

RESUMO

OBJECTIVE: To investigate the impact of reduced adipocyte fatty acid-binding protein 4 (FABP4) in control of body weight, glucose and lipid homeostasis in diet-induced obese (DIO) mice. METHODS: We applied RNA interference (RNAi) technology to generate FABP4 germline knockdown mice to investigate their metabolic phenotype. RESULTS: RNAi-mediated knockdown reduced FABP4 mRNA expression and protein levels by almost 90% in adipocytes of standard chow-fed mice. In adipocytes of DIO mice, RNAi reduced FABP4 expression and protein levels by 70 and 80%, respectively. There was no increase in adipocyte FABP5 expression in FABP4 knockdown mice. The knockdown of FABP4 significantly increased body weight and fat mass in DIO mice. However, FABP4 knockdown did not affect plasma glucose and lipid homeostasis in DIO mice; nor did it improve their insulin sensitivity. CONCLUSION: Our data indicate that robust knockdown of FABP4 increases body weight and fat mass without improving glucose and lipid homeostasis in DIO mice.


Assuntos
Adipócitos/metabolismo , Peso Corporal/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Obesidade/genética , Interferência de RNA , Animais , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Proteínas de Ligação a Ácido Graxo/genética , Técnicas de Silenciamento de Genes/métodos , Mutação em Linhagem Germinativa , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Knockout , Camundongos Obesos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Obesidade/metabolismo , RNA Mensageiro/metabolismo
2.
Genes Dev ; 15(17): 2209-14, 2001 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-11544178

RESUMO

The ancestral role of the Hox gene family is specifying morphogenetic differences along the main body axis. In vertebrates, HoxD genes were also co-opted along with the emergence of novel structures such as limbs and genitalia. We propose that these functional recruitments relied on the appearance, or implementation, of regulatory sequences outside of the complex. Whereas transgenic human and murine HOXD clusters could function during axial patterning, in mice they were not expressed outside the trunk. Accordingly, deletion of the entire cluster abolished axial expression, whereas recently acquired regulatory controls were preserved.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Camundongos Transgênicos , Proteínas de Neoplasias , Animais , Desenvolvimento Ósseo/genética , Embrião de Mamíferos/metabolismo , Evolução Molecular , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Humanos , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Modelos Genéticos , Família Multigênica , Mutação , Fenótipo , Recombinação Genética , Fatores de Tempo , Fatores de Transcrição/genética
3.
Mech Dev ; 105(1-2): 175-80, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11429294

RESUMO

Cell interactions involving Notch signaling are required for the demarcation of tissue boundaries in both invertebrate and vertebrate development. Members of the Fringe gene family encode beta-1,3 N-acetyl-glucosaminyltransferases that function to refine the spatial localization of Notch-receptor signaling to tissue boundaries. In this paper we describe the isolation and characterization of the zebrafish (Danio rerio) homologue of the lunatic fringe gene (lfng). Zebrafish lfng is generally expressed in equivalent structures to those reported for the homologous chick and mouse genes. These sites include expression along the A-P axis of the neural tube, within the lateral plate mesoderm, in the presomitic mesoderm and the somites and in specific rhombomeres of the hindbrain; however, within these general expression domains species-specific differences in lfng expression exist. In mouse, Lfng is expressed in odd-numbered rhombomeres, whereas in zebrafish, expression occurs in even-numbered rhombomeres. In contrast to reports in both mouse and chicken embryos showing a kinematic cyclical expression of Lfng mRNA in the presomitic paraxial mesoderm, we find no evidence for a cyclic pattern of expression for the zebrafish lfng gene; instead, the zebrafish lfng is expressed in two static stripes within the presomitic mesoderm. Nevertheless, in zebrafish mutants affecting the correct formation of segment boundaries in the hindbrain and somites, lfng expression is aberrant or lost.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Glicosiltransferases , Biossíntese de Proteínas , Proteínas/química , Sequência de Aminoácidos , Animais , Proteínas Aviárias , Embrião de Galinha , Clonagem Molecular , DNA Complementar/metabolismo , Hibridização In Situ , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Receptores Notch , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Peixe-Zebra , Proteínas de Peixe-Zebra
4.
Mol Cell Neurosci ; 17(6): 1014-24, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11414790

RESUMO

Heparin-binding growth-associated molecule (HB-GAM) (pleiotrophin) is a highly conserved extracellular matrix-associated protein implicated in a diverse range of developmental processes, including the formation and plasticity of neuronal connections. Using gene targeting, we have in the present study created HB-GAM-deficient mice that are viable and fertile and show no gross anatomical abnormalities. The hippocampal structure as well as basal excitatory synaptic transmission in the area CA1 appear normal in the mice lacking HB-GAM. However, hippocampal slices from HB-GAM-deficient mice display a lowered threshold for induction of long-term potentiation (LTP), which reverts back to the wild-type level by application of HB-GAM. HB-GAM expression in hippocampus is activity-dependent and upregulated in several neuropathological conditions. Thus, we suggest that HB-GAM acts as an inducible signal to inhibit LTP in hippocampus.


Assuntos
Diferenciação Celular/genética , Citocinas/deficiência , Hipocampo/crescimento & desenvolvimento , Potenciação de Longa Duração/genética , Vias Neurais/crescimento & desenvolvimento , Neurônios/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/farmacologia , Contagem de Células , Citocinas/genética , Citocinas/farmacologia , Estimulação Elétrica , Feminino , Marcação de Genes , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Knockout , Vias Neurais/citologia , Vias Neurais/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética
7.
Nat Cell Biol ; 2(8): 515-20, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10934472

RESUMO

Proteins encoded by the fringe family of genes are required to modulate Notch signalling in a wide range of developmental contexts. Using a cell co-culture assay, we find that mammalian Lunatic fringe (Lfng) inhibits Jagged1-mediated signalling and potentiates Delta1-mediated signalling through Notch1. Lfng localizes to the Golgi, and Lfng-dependent modulation of Notch signalling requires both expression of Lfng in the Notch-responsive cell and the Notch extracellular domain. Lfng does not prevent binding of soluble Jagged1 or Delta1 to Notch1-expressing cells. Lfng potentiates both Jagged1- and Delta1-mediated signalling via Notch2, in contrast to its actions with Notch1. Our data suggest that Fringe-dependent differential modulation of the interaction of Delta/Serrate/Lag2 (DSL) ligands with their Notch receptors is likely to have a significant role in the combinatorial repertoire of Notch signalling in mammals.


Assuntos
Glicosiltransferases , Proteínas de Membrana/metabolismo , Proteínas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Fatores de Transcrição , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Linhagem Celular , Técnicas de Cocultura , Fibroblastos , Glucosiltransferases , Complexo de Golgi/química , Complexo de Golgi/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Proteína Jagged-1 , Ligantes , Proteínas de Membrana/química , Camundongos , Músculos/citologia , Músculos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/antagonistas & inibidores , Proteínas/genética , Receptor Notch1 , Receptor Notch2 , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Serrate-Jagged , Transfecção
8.
Nature ; 406(6794): 369-75, 2000 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-10935626

RESUMO

Notch receptors function in highly conserved intercellular signalling pathways that direct cell-fate decisions, proliferation and apoptosis in metazoans. Fringe proteins can positively and negatively modulate the ability of Notch ligands to activate the Notch receptor. Here we establish the biochemical mechanism of Fringe action. Drosophila and mammalian Fringe proteins possess a fucose-specific beta1,3 N-acetylglucosaminyltransferase activity that initiates elongation of O-linked fucose residues attached to epidermal growth factor-like sequence repeats of Notch. We obtained biological evidence that Fringe-dependent elongation of O-linked fucose on Notch modulates Notch signalling by using co-culture assays in mammalian cells and by expression of an enzymatically inactive Fringe mutant in Drosophila. The post-translational modification of Notch by Fringe represents a striking example of modulation of a signalling event by differential receptor glycosylation and identifies a mechanism that is likely to be relevant to other signalling pathways.


Assuntos
Glicosiltransferases , Proteínas de Membrana/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Proteínas/metabolismo , Animais , Células CHO , Catálise , Linhagem Celular , Cricetinae , Drosophila , Proteínas de Drosophila , Fator de Crescimento Epidérmico/metabolismo , Fucose/metabolismo , Mutagênese Sítio-Dirigida , Polissacarídeos/metabolismo , Proteínas/genética , Receptores Notch , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Transfecção
11.
Mamm Genome ; 10(6): 535-41, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10341080

RESUMO

The three members of the mammalian fringe gene family, Manic fringe (Mfng), Radical fringe (Rfng), and Lunatic fringe (Lfng), were identified on the basis of their similarity to Drosophila fringe (fng) and their participation in the evolutionarily conserved Notch receptor signaling pathway. Fringe genes encode pioneer secretory proteins with weak similarity to glycosyltransferases. Both expression patterns and functional studies support an important role for Fringe genes in patterning during embryonic development and an association with cellular transformation. We have now further characterized the expression and determined the chromosomal localization and genomic structure of the mouse Mfng, Rfng, and Lfng genes; the genomic structure and conceptual open reading frame of the human RFNG gene; and the refined chromosomal localization of the three human fringe genes. The mouse Fringe genes are expressed in the embryo and in adult tissues. The mouse and human Fringe family members map to three different chromosomes in regions of conserved synteny: Mfng maps to mouse Chr 15, and MFNG maps to human Chr 22q13.1 in the region of two cancer-associated loci; Lfng maps to mouse Chr 5, and LFNG maps to human Chr 7p22; Rfng maps to mouse Chr 11, and RFNG maps to human Chr 17q25 in the minimal region for a familial psoriasis susceptibility locus. Characterization of the genomic loci of the Fringe gene family members reveals a conserved genomic organization of 8 exons. Comparative analysis of mammalian Fringe genomic organization suggests that the first exon is evolutionarily labile and that the Fringe genes have a genomic structure distinct from those of previously characterized glycosyltransferases.


Assuntos
Mapeamento Cromossômico , Glicosiltransferases , Proteínas/genética , Animais , Cromossomos Humanos Par 17 , Cromossomos Humanos Par 22 , Cromossomos Humanos Par 7 , Regulação da Expressão Gênica no Desenvolvimento , Glucosiltransferases , Hexosiltransferases , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Família Multigênica/genética , Proteínas/metabolismo , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
12.
Development ; 125(14): 2711-21, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9636085

RESUMO

Mutations that affect vertebrate limb development provide insight into pattern formation, evolutionary biology and human birth defects. Patterning of the limb axes depends on several interacting signaling centers; one of these, the zone of polarizing activity (ZPA), comprises a group of mesenchymal cells along the posterior aspect of the limb bud that express sonic hedgehog (Shh) and plays a key role in patterning the anterior-posterior (AP) axis. The mechanisms by which the ZPA and Shh expression are confined to the posterior aspect of the limb bud mesenchyme are not well understood. The polydactylous mouse mutant Strong's luxoid (lst) exhibits an ectopic anterior ZPA and expression of Shh that results in the formation of extra anterior digits. Here we describe a new chlorambucil-induced deletion allele, lstAlb, that uncovers the lst locus. Integration of the lst genetic and physical maps suggested the mouse Aristaless-like4 (Alx4) gene, which encodes a paired-type homeodomain protein that plays a role in limb patterning, as a strong molecular candidate for the Strong's luxoid gene. In genetic crosses, the three lst mutant alleles fail to complement an Alx4 gene-targeted allele. Molecular and biochemical characterization of the three lst alleles reveal mutations of the Alx4 gene that result in loss of function. Alx4 haploinsufficiency and the importance of strain-specific modifiers leading to polydactyly are indicative of a critical threshold requirement for Alx4 in a genetic program operating to restrict polarizing activity and Shh expression in the anterior mesenchyme of the limb bud, and suggest that mutations in Alx4 may also underlie human polydactyly.


Assuntos
Proteínas de Drosophila , Extremidades/crescimento & desenvolvimento , Proteínas de Homeodomínio/química , Proteínas de Insetos/genética , Polidactilia/genética , Transativadores , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Biológica , Clorambucila/farmacologia , Mapeamento Cromossômico , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Hedgehog , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Morfogênese/fisiologia , Mutagênese/genética , Proteínas/fisiologia , Análise de Sequência de DNA , Deleção de Sequência/genética
14.
Development ; 124(18): 3481-92, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9342041

RESUMO

The semi-dominant mouse mutation Ulnaless alters patterning of the appendicular but not the axial skeleton. Ulnaless forelimbs and hindlimbs have severe reductions of the proximal limb and less severe reductions of the distal limb. Genetic and physical mapping has failed to separate the Ulnaless locus from the HoxD gene cluster (Peichel, C. L., Abbott, C. M. and Vogt, T. F. (1996) Genetics 144, 1757-1767). The Ulnaless limb phenotypes are not recapitulated by targeted mutations in any single HoxD gene, suggesting that Ulnaless may be a gain-of-function mutation in a coding sequence or a regulatory mutation. Deregulation of 5' HoxD gene expression is observed in Ulnaless limb buds. There is ectopic expression of Hoxd-13 and Hoxd-12 in the proximal limb and reduction of Hoxd-13, Hoxd-12 and Hoxd-11 expression in the distal limb. Skeletal reductions in the proximal limb may be a consequence of posterior prevalence, whereby proximal misexpression of Hoxd-13 and Hoxd-12 results in the transcriptional and/or functional inactivation of Hox group 11 genes. The Ulnaless digit phenotypes are attributed to a reduction in the distal expression of Hoxd-13, Hoxd-12, Hoxd-11 and Hoxa-13. In addition, Hoxd-13 expression is reduced in the genital bud, consistent with the observed alterations of the Ulnaless penian bone. No alterations of HoxD expression or skeletal phenotypes were observed in the Ulnaless primary axis. We propose that the Ulnaless mutation alters a cis-acting element that regulates HoxD expression specifically in the appendicular axes of the embryo.


Assuntos
Padronização Corporal , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Proteínas de Homeodomínio/genética , Mutação , Ulna/embriologia , Animais , Feminino , Marcação de Genes , Genitália Feminina/embriologia , Genitália Masculina/embriologia , Botões de Extremidades/embriologia , Botões de Extremidades/metabolismo , Deformidades Congênitas dos Membros/embriologia , Deformidades Congênitas dos Membros/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Família Multigênica , Fenótipo , Ulna/anormalidades
15.
Development ; 124(11): 2245-54, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9187150

RESUMO

The formation of boundaries between groups of cells is a universal feature of metazoan development. Drosophila fringe modulates the activation of the Notch signal transduction pathway at the dorsal-ventral boundary of the wing imaginal disc. Three mammalian fringe-related family members have been cloned and characterized: Manic, Radical and Lunatic Fringe. Expression studies in mouse embryos support a conserved role for mammalian Fringe family members in participation in the Notch signaling pathway leading to boundary determination during segmentation. In mammalian cells, Drosophila fringe and the mouse Fringe proteins are subject to posttranslational regulation at the levels of differential secretion and proteolytic processing. When misexpressed in the developing Drosophila wing imaginal disc the mouse Fringe genes exhibit conserved and differential effects on boundary determination.


Assuntos
Padronização Corporal/genética , Glicosiltransferases , Proteínas de Insetos/genética , Proteínas de Membrana/genética , N-Acetilglucosaminiltransferases , Proteínas/genética , Transdução de Sinais/genética , Sequência de Aminoácidos , Animais , Drosophila , Proteínas de Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Glucosiltransferases , Hexosiltransferases , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Dados de Sequência Molecular , Família Multigênica , Sistema Nervoso/química , Sistema Nervoso/embriologia , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , RNA Mensageiro/análise , Receptores Notch , Proteínas Recombinantes de Fusão , Alinhamento de Sequência , Somitos , Asas de Animais/crescimento & desenvolvimento
16.
Curr Opin Cell Biol ; 9(6): 867-76, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9425353

RESUMO

In both Drosophila wings and vertebrate limbs, signaling between dorsal and ventral cells establishes an organizer that promotes limb formation. Significant progress has been made recently towards characterizing the signaling interactions that occur at the dorsal-ventral limb border. Studies of chicks have indicated that, as in Drosophila, this signaling process requires the participation of Fringe. Studies of Drosophila have indicated that Fringe functions by inhibiting the ability of Notch to be activated by one ligand, Serrate, while potentiating the ability of Notch to be activated by another ligand, Delta. Recent studies of both Drosophila and vertebrates have also shed new light on the signaling activity of the dorsal-ventral boundary limb organizer, and have highlighted how this organizer is maintained by feedback mechanisms with neighboring cells.


Assuntos
Padronização Corporal , Extremidades/crescimento & desenvolvimento , N-Acetilglucosaminiltransferases , Transdução de Sinais , Animais , Comunicação Celular , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Proteínas de Drosophila , Extremidades/embriologia , Proteínas de Insetos/fisiologia , Proteínas de Membrana/fisiologia , Receptores Notch , Vertebrados/embriologia , Vertebrados/fisiologia , Asas de Animais/crescimento & desenvolvimento
17.
Genetics ; 144(4): 1757-67, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8978061

RESUMO

The mouse Ulnaless locus is a semidominant mutation which displays defects in patterning along the proximal-distal and anterior-posterior axes of all four limbs. The first Ulnaless homozygotes have been generated, and they display a similar, though slightly more severe, limb phenotype than the heterozygotes. To create a refined genetic map of the Ulnaless region using molecular markers, four backcrosses segregating Ulnaless were established. A 0.4-cM interval containing the Ulnaless locus has been defined on mouse chromosome 2, which has identified Ulnaless as a possible allele of a Hoxd cluster gene(s). With this genetic map as a framework, a physical map of the Ulnaless region has been completed. Yeast artificial chromosomes covering this region have been isolated and ordered into a 2 Mb contig. Therefore, the region that must contain the Ulnaless locus has been defined and cloned, which will be invaluable for the identification of the molecular nature of the Ulnaless mutation.


Assuntos
Mapeamento Cromossômico , Genes Dominantes , Mutação , Animais , Cromossomos Artificiais de Levedura , Camundongos
19.
Dev Genet ; 19(1): 33-42, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8792607

RESUMO

The study of limb development has provided insight into pattern formation during vertebrate embryogenesis. Genetic approaches offer powerful ways to identify the critical molecules and their pathways of action required to execute a complex morphogenetic program. We have applied genetic analysis to the process of limb development by studying two mouse mutants, limb deformity (ld) and Strong's luxoid (lst). These mutations confer contrasting phenotypic alterations to the anteroposterior limb pattern. The six mutant ld alleles are fully recessive and result in oligosyndactyly of all four limbs. By contrast, the two mutant lst alleles result in a mirror-image polydactylous limb phenotype inherited in a semidominant fashion. Morphological and molecular analysis of embryonic limbs has shown that the ld and lst alleles affect the extent and distribution of two key signaling centers differentially: the apical ectodermal ridge and the zone of polarizing activity. Molecular characterization of the ld gene has defined a new family of evolutionarily conserved proteins termed the formins. The underlying molecular defect in the lst mutation has not been identified; however, both loci are tightly linked on mouse chromosome 2, suggesting the possibility that they may be allelic. In this study, we have used genetic analysis to examine the epistatic and allelic relationships of ld and lst. We observed that in + ld/lst + double heterozygotes, a single mutant ld allele is able to suppress the semi-dominant polydactylous lst limb phenotype. By segregating the lst and ld loci in a backcross, we observed that these loci recombine and are separated by a genetic distance of approximately 6 cM. Therefore, while our observations demonstrate a genetic interaction between ld and lst, it is probable that ld and lst are not allelic. Instead, lst and ld may be operating either in a linear or in a parallel (bypass) genetic pathway to affect the limb signaling centers.


Assuntos
Desenvolvimento Embrionário e Fetal/genética , Botões de Extremidades/anormalidades , Deformidades Congênitas dos Membros , Polidactilia/genética , Alelos , Animais , Osso e Ossos/embriologia , Cruzamentos Genéticos , Primers do DNA , Feminino , Ligação Genética , Marcadores Genéticos , Heterozigoto , Homozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Mutantes , Polimorfismo Genético , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA