Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 6(10): 1516-1527, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28882840

RESUMO

Phosphorylation of the C-terminal tail of the heavy neurofilament subunit (NF-H) impacts neurofilament (NF) axonal transport and residence within axons by fostering NF-NF associations that compete with transport. We tested the role of phosphorylation of a GSK-3ß consensus site (S493) located in the proximal portion of the NF-H tail in NF dynamics by transfection of NB2a/d1 cells with NF-H, where S493 was mutated to aspartic acid (S493D) or to alanine (S493A) to mimic constitutive phosphorylation and non-phosphorylation. S493D underwent increased transport into axonal neurites, while S493A displayed increased perikaryal NF aggregates that were decorated by anti-kinesin. Increased levels of S493A co-precipitated with anti-kinesin indicating that reduced transport of S493A was not due to reduced kinesin association but due to premature NF-NF interactions within perikarya. S493D displayed increased phospho-immunoreactivity within axonal neurites at downstream C-terminal sites attributable to mitogen-activated protein kinase and cyclin-dependent kinase 5. However, S493D was more prone to proteolysis following kinase inhibition, suggesting that S493 phosphorylation is an early event that alters sidearm configuration in a manner that promotes appropriate NF distribution. We propose a novel model for sidearm configuration.

2.
Open Neurol J ; 11: 84-91, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29387280

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive disease of motor neurons that has no cure or effective treatment. Any approach that could sustain minor motor function during terminal stages would improve quality of life. OBJECTIVE: We examined the impact of omega-3 (Ω-3) and Ω-6, on motor neuron function in mice expressing mutant human superoxide dismutase-1 (SOD-1), which dominantly confers familial ALS and induces a similar sequence of motor neuron decline and eventual death when expressed in mice. METHOD: Mice received standard diets supplemented with equivalent amounts of Ω-3 and Ω-6 or a 10x increase in Ω-6 with no change in Ω-3 commencing at 4 weeks of age. Motor function and biochemical/histological parameters were assayed by standard methodologies. RESULTS: Supplementation with equivalent Ω-3 and Ω-6 hastened motor neuron pathology and death, while 10x Ω-6 with no change in Ω-3 significantly delayed motor neuron pathology, including preservation of minor motor neuron function during the terminal stage. CONCLUSION: In the absence of a cure or treatment, affected individuals may resort to popular nutritional supplements such as Ω-3 as a form of "self-medication". However, our findings and those of other laboratories indicate that such an approach could be harmful. Our findings suggest that a critical balance of Ω-6 and Ω-3 may temporarily preserve motor neuron function during the terminal stages of ALS, which could provide a substantial improvement in quality of life for affected individuals and their caregivers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...