Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958816

RESUMO

Alzheimer's disease (AD) represents a major diagnostic challenge, as early detection is crucial for effective intervention. This review examines the diagnostic challenges facing current AD evaluations and explores the emerging field of retinal alterations as early indicators. Recognizing the potential of the retina as a noninvasive window to the brain, we emphasize the importance of identifying retinal biomarkers in the early stages of AD. However, the examination of AD is not without its challenges, as the similarities shared with other retinal diseases introduce complexity in the search for AD-specific markers. In this review, we address the relevance of using the retina for the early diagnosis of AD and the complex challenges associated with the search for AD-specific retinal biomarkers. We provide a comprehensive overview of the current landscape and highlight avenues for progress in AD diagnosis by retinal examination.


Assuntos
Doença de Alzheimer , Doenças Retinianas , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/complicações , Retina , Doenças Retinianas/diagnóstico , Doenças Retinianas/complicações , Biomarcadores , Encéfalo
2.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203366

RESUMO

Glaucoma is a neurodegenerative disease that affects the retinal ganglion cells (RGCs). The main risk factor is elevated intraocular pressure (IOP), but the actual cause of the disease remains unknown. Emerging evidence indicates that metabolic dysfunction plays a central role. The aim of the current study was to determine and compare the effect of universal hypoxia on the metabolomic signature in plasma samples from healthy controls (n = 10), patients with normal-tension glaucoma (NTG, n = 10), and ocular hypertension (OHT, n = 10). By subjecting humans to universal hypoxia, we aim to mimic a state in which the mitochondria in the body are universally stressed. Participants were exposed to normobaric hypoxia for two hours, followed by a 30 min recovery period in normobaric normoxia. Blood samples were collected at baseline, during hypoxia, and in recovery. Plasma samples were analyzed using a non-targeted metabolomics approach based on liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). Multivariate analyses were conducted using principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), and univariate analysis using the Wilcoxon signed-rank test and false discovery rate (FDR) correction. Unique metabolites involved in fatty acid biosynthesis and ketone body metabolism were upregulated, while metabolites of the kynurenine pathway were downregulated in OHT patients exposed to universal hypoxia. Differential affection of metabolic pathways may explain why patients with OHT initially do not suffer or are more resilient from optic nerve degeneration. The metabolomes of NTG and OHT patients are regulated differently from control subjects and show dysregulation of metabolites important for energy production. These dysregulated processes may potentially contribute to the elevation of IOP and, ultimately, cell death of the RGCs.


Assuntos
Glaucoma , Doenças Neurodegenerativas , Humanos , Olho , Metaboloma , Hipóxia
3.
Cells ; 11(13)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35805182

RESUMO

BACKGROUND: Progressive retinal ganglion cell (RGC) dysfunction and death are common characteristics of retinal neurodegenerative diseases. Recently, hydroxycarboxylic acid receptor 1 (HCA1R, GPR81) was identified as a key modulator of mitochondrial function and cell survival. Thus, we aimed to test whether activation of HCA1R with 3,5-Dihydroxybenzoic acid (DHBA) also promotes RGC survival and improves energy metabolism in mouse retinas. METHODS: Retinal explants were treated with 5 mM of the HCA1R agonist, 3,5-DHBA, for 2, 4, 24, and 72 h. Additionally, explants were also treated with 15 mM of L-glutamate to induce toxicity. Tissue survival was assessed through lactate dehydrogenase (LDH) viability assays. RGC survival was measured through immunohistochemical (IHC) staining. Total ATP levels were quantified through bioluminescence assays. Energy metabolism was investigated through stable isotope labeling and gas chromatography-mass spectrometry (GC-MS). Lactate and nitric oxide levels were measured through colorimetric assays. RESULTS: HCA1R activation with 3,5-DHBAincreased retinal explant survival. During glutamate-induced death, 3,5-DHBA treatment also increased survival. IHC analysis revealed that 3,5-DHBA treatment promoted RGC survival in retinal wholemounts. 3,5-DHBA treatment also enhanced ATP levels in retinal explants, whereas lactate levels decreased. No effects on glucose metabolism were observed, but small changes in lactate metabolism were found. Nitric oxide levels remained unaltered in response to 3,5-DHBA treatment. CONCLUSION: The present study reveals that activation of HCA1R with 3,5-DHBA treatment has a neuroprotective effect specifically on RGCs and on glutamate-induced retinal degeneration. Hence, HCA1R agonist administration may be a potential new strategy for rescuing RGCs, ultimately preventing visual disability.


Assuntos
Óxido Nítrico , Degeneração Retiniana , Trifosfato de Adenosina , Animais , Morte Celular , Ácido Glutâmico , Ácido Láctico/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/agonistas
4.
Front Neurosci ; 16: 824054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264926

RESUMO

Glaucoma is a common ocular neurodegenerative disease characterized by the progressive loss of retinal ganglion cells and their axons. It is the most common cause of irreversible blindness. With an increasing number of glaucoma patients and disease progression despite treatment, it is paramount to develop new and effective therapeutics. Emerging new candidates are the receptor agonists of the incretin hormone glucagon-like-peptide-1 (GLP-1), originally used for the treatment of diabetes. GLP-1 receptor (GLP-1R) agonists have shown neuroprotective effects in preclinical and clinical studies on neurodegenerative diseases in both the brain (e.g., Alzheimer's disease, Parkinson's disease, stroke and diabetic neuropathy) and the eye (e.g., diabetic retinopathy and AMD). However, there are currently very few studies investigating the protective effects of GLP-1R agonists in the treatment of specifically glaucoma. Based on a literature search on PubMed, the Cochrane Library, and ClinicalTrials.gov, this review aims to summarize current clinical literature on GLP-1 receptor agonists in the treatment of neurodegenerative diseases to elucidate their potential in future anti-glaucomatous treatment strategies.

5.
Cell Mol Neurobiol ; 42(1): 41-57, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33040237

RESUMO

Estrogen is essential in maintaining various physiological features in women, and a decline in estrogen levels are known to give rise to numerous unfortunate symptoms associated with menopause. To alleviate these symptoms hormone replacement therapy with estrogen is often used, and has been shown to be fruitful in improving quality of life in women suffering from postmenopausal discomforts. An often forgotten condition associated with menopause is the optic nerve disorder, glaucoma. Thus, estrogen may also have an impact in maintaining the retinal ganglion cells (RGCs), which make up the optic nerve, thereby preventing glaucomatous neurodegeneration. This review aims to provide an overview of possible associations of estrogen and the glaucoma subtype, primary open-angle glaucoma (POAG), by evaluating the current literature through a PubMed-based literature search. Multiple in vitro and in vivo studies of RGC protection, as well as clinical and epidemiological data concerning the well-defined retinal neurodegenerative disorder POAG have been reviewed. Over all, deficiencies in retinal estrogen may potentially instigate RGC loss, visual disability, and eventual blindness. Estrogen replacement therapy may therefore be a beneficial future treatment. However, more studies are needed to confirm the relevance of estrogen in glaucoma prevention.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Estrogênios , Feminino , Glaucoma/tratamento farmacológico , Glaucoma de Ângulo Aberto/diagnóstico , Glaucoma de Ângulo Aberto/tratamento farmacológico , Humanos , Qualidade de Vida , Células Ganglionares da Retina
6.
Cell Mol Neurobiol ; 42(1): 291-303, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34259962

RESUMO

Visual changes are some of the earliest symptoms that patients with Alzheimer's disease (AD) experience. Pathophysiological processes such as amyloid-ß plaque formation, vascular changes, neuroinflammation, and loss of retinal ganglion cells (RGCs) have been detected in the retina of AD patients and animal models. However, little is known about the molecular processes that underlie retinal neurodegeneration in AD. The cellular architecture and constant sensory activity of the retina impose high metabolic demands. We thus hypothesized that energy metabolism might be compromised in the AD retina similarly to what has been observed in the AD brain. To address this question, we explored cellular alterations and retinal metabolic activity in the 5 × FAD mouse model of AD. We used 8-month-old female 5 × FAD mice, in which the AD-related pathology has been shown to be apparent. We observed that RGC density is selectively affected in the retina of 5 × FAD mice. To map retinal metabolic activity, we incubated isolated retinal tissue with [U-13C] glucose and analyzed tissue extracts by gas chromatography-mass spectrometry. We found that the retinas of 5 × FAD mice exhibit glucose hypometabolism. Moreover, we detected decreased glutamine synthesis in 5 × FAD retinas but no changes in the expression of markers of Müller glia, the main glial cell type responsible for glutamate uptake and glutamine synthesis in the retina. These findings suggest that AD presents with metabolic alterations not only in the brain but also in the retina that may be detrimental to RGC activity and survival, potentially leading to the visual impairments that AD patients suffer.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Retina/metabolismo
7.
Biomed Hub ; 6(2): 69-75, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616748

RESUMO

INTRODUCTION: Most intraocular pressure (IOP)-lowering eye drops are preserved with benzalkonium chloride (BAK). This can increase side effects and decrease adherence. Particularly, damage to the mucin-producing conjunctival goblet cells may be an issue due to instability of the tear film. We aimed to investigate the effect of IOP-lowering eye drops preserved with BAK on cultured human conjunctival goblet cells. METHODS: Eye drops Brimonidine Tartrate Teva (BT) with 0.005% BAK, Dorzolamide Stada (DS) with 0.0075% BAK, Optimol® (OP) with 0.01% BAK, and Latanoprost Teva (LT) with 0.02% BAK were included. Human primary cultured goblet cell survival was evaluated using a lactate dehydrogenase assay on human goblet cells after treatment for 30 min and 6 h with the different anti-glaucoma drug formulations. RESULTS: All eye drops examined, except BT, reduced goblet cell survival. The impact of eye drops on goblet cell viability was correlated with the time of exposure as well as to the concentration of BAK. After 30 min of exposure, cell viability was 93% for BT (0.005% BAK; p = 0.93), 71% for DS (0.0075% BAK; p = 0.067), 70% for OP (0.01% BAK; p = 0.054), and 69% for LT (0.02% BAK; p = 0.022), and exposure for 6 h reduced cell survival to 74% for BT (p = 0.217), 52% for DS (p = 0.011), 34% for OP (p = 0.017), and 31% for LT (p = 0.0007). CONCLUSION: LT, OP, and DS reduced human goblet cell survival in a time-dependent manner. BT did not affect goblet cell survival. Cell survival was correlated with the BAK concentration in the eye drops making 0.02% BAK-preserved LT most toxic and 0.005% BAK-preserved BT least toxic. Based on the present study, decreasing BAK in eye drops for chronic use seems important to reduce damage to the goblet cells. However, future studies are needed to further explore this finding.

8.
Antioxidants (Basel) ; 10(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34679672

RESUMO

Increasing evidence indicates that changes in the redox system may contribute to the pathogenesis of multiple optic neuropathies. Optic neuropathies are characterized by the neurodegeneration of the inner-most retinal neurons, the retinal ganglion cells (RGCs), and their axons, which form the optic nerve. Often, optic neuropathies are asymptomatic until advanced stages, when visual impairment or blindness is unavoidable despite existing treatments. In this review, we describe systemic and, whenever possible, ocular redox dysregulations observed in patients with glaucoma, ischemic optic neuropathy, optic neuritis, hereditary optic neuropathies (i.e., Leber's hereditary optic neuropathy and autosomal dominant optic atrophy), nutritional and toxic optic neuropathies, and optic disc drusen. We discuss aspects related to anti/oxidative stress biomarkers that need further investigation and features related to study design that should be optimized to generate more valuable and comparable results. Understanding the role of oxidative stress in optic neuropathies can serve to develop therapeutic strategies directed at the redox system to arrest the neurodegenerative processes in the retina and RGCs and ultimately prevent vision loss.

9.
J Ophthalmol ; 2021: 5826361, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34430053

RESUMO

PURPOSE: To investigate whether patients with normal tension glaucoma (NTG) show an enhanced stress response to reduced oxygen supply compared to age-matched healthy controls, measured by serum adrenaline and endothelin-1 (ET-1) levels and changes in distal finger temperature. METHODS: A thorough clinical characterization of patients with NTG and age-matched controls was performed prior to inclusion in the study. Twelve patients with NTG and eleven healthy controls met the inclusion criteria and were enrolled in the study. All subjects underwent a two-day investigation. Participants were randomly exposed to either hypoxia or normoxia during the first visit. Hypoxia or normoxia was induced for two hours through a tightly fitting face mask. In addition, the peripheral circulation was assessed with a thermographic camera. Blood samples were obtained before, during, and after hypoxia or normoxia to evaluate systemic stress molecules such as catecholamines and ET-1 levels. RESULTS: In patients with NTG, reduced oxygen supply induced an increase in peripheral blood adrenaline (p < 0.05) and a decrease during recovery (p < 0.01). A difference in distal finger temperature was shown in patients with NTG under hypoxia compared to normoxia (exposure: p < 0.05; recovery: p < 0.05). Hypoxia induced an increase in peripheral blood ET-1 levels in both groups (NTG: p < 0.01; controls: p < 0.05). CONCLUSION: Patients with NTG had an enhanced physiological stress response as a consequence of hypoxia compared with age-matched controls. Although more studies are needed, the present study supports the involvement of vascular risk factors in the pathophysiology of NTG.

10.
Redox Biol ; 43: 101988, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932867

RESUMO

Nicotinamide adenine dinucleotide (NAD) is a REDOX cofactor and metabolite essential for neuronal survival. Glaucoma is a common neurodegenerative disease in which neuronal levels of NAD decline. We assess the effects of nicotinamide (a precursor to NAD) on retinal ganglion cells (the affected neuron in glaucoma) in normal physiological conditions and across a range of glaucoma relevant insults including mitochondrial stress and axon degenerative insults. We demonstrate retinal ganglion cell somal, axonal, and dendritic neuroprotection by nicotinamide in rodent models which represent isolated ocular hypertensive, axon degenerative, and mitochondrial degenerative insults. We performed metabolomics enriched for small molecular weight metabolites for the retina, optic nerve, and superior colliculus which demonstrates that ocular hypertension induces widespread metabolic disruption, including consistent changes to α-ketoglutaric acid, creatine/creatinine, homocysteine, and glycerophosphocholine. This metabolic disruption is prevented by nicotinamide. Nicotinamide provides further neuroprotective effects by increasing oxidative phosphorylation, buffering and preventing metabolic stress, and increasing mitochondrial size and motility whilst simultaneously dampening action potential firing frequency. These data support continued determination of the utility of long-term nicotinamide treatment as a neuroprotective therapy for human glaucoma.


Assuntos
Glaucoma , Doenças Neurodegenerativas , Animais , Modelos Animais de Doenças , Humanos , Neuroproteção , Niacinamida , Células Ganglionares da Retina
11.
Transl Vis Sci Technol ; 10(1): 22, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33510961

RESUMO

Purpose: Animal models show retinal ganglion cell (RGC) injuries that replicate features of glaucoma and the contralateral eye is commonly used as an internal control. There is significant crossover of RGC axons from the ipsilateral to the contralateral side at the level of the optic chiasm, which may confound findings when damage is restricted to one eye. The effect of unilateral glaucoma on neuroinflammatory damage to the contralateral pathway of RGC projections has largely been unexplored. Methods: Ocular hypertensive glaucoma was induced unilaterally or bilaterally in the rat and RGC neurodegenerative events were assessed. Neuroinflammation was quantified in the retina, optic nerve head, optic nerve, lateral geniculate nucleus, and superior colliculus by high-resolution imaging, and in the retina by flow cytometry and protein arrays. Results: After ocular hypertensive stress, peripheral monocytes enter the retina and microglia become reactive. This effect is more marked in animals with bilateral ocular hypertensive glaucoma. In rats where glaucoma was induced unilaterally, there was significant microglia activation in the contralateral (control) eye. Microglial activation extended into the optic nerve and terminal visual thalami, where it was similar across hemispheres in unilateral ocular hypertension. Conclusions: These data suggest that caution is warranted when using the contralateral eye as a control and in comparing visual thalami in unilateral models of glaucoma. Translational Relevance: The use of a contralateral eye as a control may confound the discovery of human-relevant mechanism and treatments in animal models. We also identify neuroinflammatory protein responses that warrant further investigation as potential disease-modifiable targets.


Assuntos
Glaucoma , Hipertensão Ocular , Animais , Modelos Animais de Doenças , Microglia , Ratos , Células Ganglionares da Retina
12.
J Clin Med ; 9(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942740

RESUMO

The main risk factor for primary open-angle glaucoma (POAG) is increased intraocular pressure (IOP). It is of interest that about half of the patients have an IOP within the normal range (normal-tension glaucoma, NTG). Additionally, there is a group of patients with a high IOP but no glaucomatous neurodegeneration (ocular hypertension, OHT). Therefore, risk factors other than IOP are involved in the pathogenesis of glaucoma. Since the retina has a very high oxygen-demand, decreased autoregulation and a fluctuating oxygen supply to the retina have been linked to glaucomatous neurodegeneration. To assess the significance of these mechanisms, we have utilized a human experimental model, in which we stress participants with a fluctuating oxygen supply. Levels of oxidative stress molecules, antioxidants, and lipid mediators were measured in the plasma. Patients with NTG, OHT, and control subjects were found to have similar levels of oxidative stress markers. In contrast, patients with OHT had a higher level of total antioxidant capacity (TAC) and pro-homeostatic lipid mediators. Thus, we suggest that OHT patients manage fluctuating oxygen levels more efficiently and, thus, are less susceptible to glaucomatous neurodegenerations, due to enhanced systemic antioxidant protection.

13.
Mol Neurobiol ; 57(4): 2021-2037, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31916030

RESUMO

The retina is an extension of the central nervous system and has been considered to be a simplified, more tractable and accessible version of the brain for a variety of neuroscience investigations. The optic nerve displays changes in response to underlying neurodegenerative diseases, such as stroke, multiple sclerosis, and Alzheimer's disease, as well as inner retinal neurodegenerative disease, e.g., glaucoma. Neurodegeneration has increasingly been linked to dysfunctional energy metabolism or conditions in which the energy supply does not meet the demand. Likewise, increasing lactate levels have been correlated with conditions consisting of unbalanced energy supply and demand, such as ischemia-associated diseases or excessive exercise. Lactate has thus been acknowledged as a metabolic waste product in organs with high energy metabolism. However, in the past decade, numerous beneficial roles of lactate have been revealed in the central nervous system. In this context, lactate has been identified as a valuable energy substrate, protecting against glutamate excitotoxicity and ischemia, as well as having signaling properties which regulate cellular functions. The present review aims to summarize and discuss protective roles of lactate in various model systems (in vitro, ex vivo, and in vivo) reflecting the inner retina focusing on lactate metabolism and signaling in inner retinal homeostasis and disease.


Assuntos
Ácido Láctico/metabolismo , Retina/metabolismo , Animais , Células Ependimogliais/metabolismo , Humanos , Modelos Biológicos , Neuroproteção , Células Ganglionares da Retina/metabolismo
14.
J Mol Biol ; 431(9): 1878-1888, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30878479

RESUMO

Loss of retinal ganglion cells (RGCs) is a leading cause of blinding conditions. The purpose of this study was to evaluate the effect of extracellular l-lactate on RGC survival facilitated through lactate metabolism and ATP production. We identified lactate as a preferred energy substrate over glucose in murine RGCs and showed that lactate metabolism and consequently increased ATP production are crucial components in promoting RGC survival during energetic crisis. Lactate was released to the extracellular environment in the presence of glucose and detained intracellularly during glucose deprivation. Lactate uptake and metabolism was unaltered in the presence and absence of glucose. However, the ATP production declined significantly for 24 h of glucose deprivation and increased significantly in the presence of lactate. Finally, lactate exposure for 2 and 24 h resulted in increased RGC survival during glucose deprivation. In conclusion, the metabolic pathway of lactate in RGCs may be of great future interest to unravel potential pharmaceutical targets, ultimately leading to novel therapies in the prevention of blinding neurodegenerative diseases, for example, glaucoma.


Assuntos
Trifosfato de Adenosina/biossíntese , Células Ependimogliais/efeitos dos fármacos , Glucose/farmacologia , Ácido Láctico/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Glucose/deficiência , Ácido Láctico/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Técnicas de Cultura de Tecidos
15.
Invest Ophthalmol Vis Sci ; 60(4): 999-1008, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30884529

RESUMO

Purpose: Besides being actively metabolized, lactate may also function as a signaling molecule by activation of the G-protein-coupled receptor 81 (GPR81). Thus, we aimed to characterize the metabolic effects of GPR81 activation in Müller cells. Method: Primary Müller cells from mice were treated with and without 10 mM L-lactate in the presence or absence of 6 mM glucose. The effects of lactate receptor GPR81 activation were evaluated by the addition of 5 mM 3,5-DHBA (3,5-dihydroxybenzoic acid), a GPR81 agonist. Western blot analyses were used to determine protein expression of GPR81. Cell survival was assessed through 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) viability assays. Lactate release was quantified by commercially available lactate kits. 13C-labeling studies via mass spectroscopy and Seahorse analyses were performed to evaluate metabolism of lactate and glucose, and mitochondrial function. Finally, Müller cell function was evaluated by measuring glutamate uptake. Results: The lactate receptor, GPR81, was upregulated during glucose deprivation. Treatment with a GPR81 agonist did not affect Müller cell survival. However, GPR81 activation diminished lactate release allowing lactate to be metabolized intracellularly. Furthermore, GPR81 activation increased metabolism of glucose and mitochondrial function. Finally, maximal glutamate uptake decreased in response to GPR81 activation during glucose deprivation. Conclusions: The present study revealed dual properties of lactate via functioning as an active metabolic energy substrate and a regulatory molecule by activation of the GPR81 receptor in primary Müller cells. Thus, combinational therapy of lactate and GPR81 agonists may be of future interest in maintaining Müller cell survival, ultimately leading to increased resistance toward retinal neurodegeneration.


Assuntos
Células Ependimogliais/efeitos dos fármacos , Ácido Láctico/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Western Blotting , Sobrevivência Celular , Células Ependimogliais/metabolismo , Glucose/farmacologia , Hidroxibenzoatos/farmacologia , Ácido Láctico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/agonistas , Resorcinóis/farmacologia
16.
Acta Ophthalmol ; 97(6): 567-576, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30690927

RESUMO

PURPOSE: To assess novel differences in serum levels of glucose, lactate and amino acids in patients with normal-tension glaucoma (NTG) compared to age-matched controls, at baseline and in response to universal hypoxia. METHODS: Twelve patients diagnosed with NTG and eleven control subjects underwent normobaric hypoxia for 2 hr. Peripheral venous blood samples were taken at baseline, during hypoxia and in the recovery phase. Serum glucose and lactate levels were measured by a blood gas analyser. Amino acids were analysed by high-performance liquid chromatography. RESULTS: Baseline levels of lactate and total amino acids were significantly lower in patients with NTG compared to healthy controls. No differences were seen in blood glucose levels between the two groups. Lactate levels remained unchanged during hypoxia in the control group, but increased in patients with NTG. In the recovery phase, total amino acid levels were reduced in the control group, whereas no changes were found in patients with NTG. CONCLUSION: Reduced serum levels of lactate and total amino acids were identified as potential markers for NTG. Moreover, significant differential regulatory patterns of certain amino acids were found in patients with NTG compared to control subjects. Overall, our results suggest a link between systemic energy metabolites and NTG and support a novel understanding of glaucoma as an inner retinal manifestation of a systemic condition.


Assuntos
Aminoácidos/sangue , Glicemia/metabolismo , Glaucoma/sangue , Hipóxia/sangue , Pressão Intraocular/fisiologia , Ácido Láctico/sangue , Idoso , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Feminino , Glaucoma/complicações , Glaucoma/fisiopatologia , Humanos , Hipóxia/complicações , Masculino , Estudos Retrospectivos
17.
Neural Regen Res ; 13(10): 1741-1742, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30136688
18.
Mol Neurobiol ; 55(12): 9108-9121, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29644598

RESUMO

Müller cells are pivotal in sustaining retinal ganglion cells, and an intact energy metabolism is essential for upholding Müller cell functions. The present study aimed to investigate the impact of lactate on Müller cell survival and function. Primary mice Müller cells and human Müller cell lines (MIO-M1) were treated with or without lactate (10 or 20 mM) for 2 and 24 hours. Simultaneously, Müller cells were incubated with or without 6 mM of glucose. L-lactate exposure increased Müller cell survival independently of the presence of glucose. This effect was abolished by the addition of the monocarboxylate inhibitor 4-cinnamic acid to the treatment media, whereas survival continued to increase in response to addition of D-lactate during glucose restriction. ATP levels decreased over time in MIO-M1 cells and remained stable over time in primary Müller cells. Lactate was preferably metabolized in MIO-M1 cells compared to glucose, and 10 mM of L-Lactate exposure prevented complete glycogen depletion in MIO-M1 cells. Glutamate uptake increased after 2 hours and decreased after 24 hours in glucose-restricted Müller cells compared to cells with glucose supplement. The addition of 10 mM of lactate to the treatment media increased glutamate uptake in glucose supplemented and restricted cells. In conclusion, lactate is a key component in maintaining Müller cell survival and function. Hence, lactate administration may be of great future interest, ultimately leading to novel therapies to rescue retinal ganglion cells.


Assuntos
Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Ácido Láctico/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glicogênio/metabolismo , Camundongos Endogâmicos C57BL , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fatores de Tempo
20.
Mitochondrion ; 36: 66-76, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28365408

RESUMO

Dysfunction of photoreceptors, retinal pigment epithelium (RPE) or both contribute to the initiation and progression of several outer retinal disorders. Disrupted Müller glia function might additionally subsidize to these diseases. Mitochondrial malfunctioning is importantly associated with outer retina pathologies, which can be classified as primary and secondary mitochondrial disorders. This review highlights the importance of oxidative stress and mitochondrial DNA damage, underlying outer retinal disorders. Indeed, the metabolically active photoreceptors/RPE are highly prone to these hallmarks of mitochondrial dysfunction, indicating that mitochondria represent a weak link in the antioxidant defenses of outer retinal cells.


Assuntos
Mitocôndrias/patologia , Doenças Retinianas/patologia , Doenças Retinianas/fisiopatologia , Dano ao DNA , DNA Mitocondrial/genética , Células Ependimogliais/patologia , Humanos , Estresse Oxidativo , Células Fotorreceptoras de Vertebrados/patologia , Epitélio Pigmentado da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...