Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37570575

RESUMO

Cellulose has been a go-to material for its dielectric properties from the onset of capacitor development. The demand for an energy storage solution continues to grow, but the supply remains limited and relies too often on fossil and mined materials. This work proposes a fully sustainable and green method with which to produce dielectric thin films made of renewable and degradable materials. Cellulose nanocrystals (CNC) made an excellent matrix for the dispersion of proteins and the fabrication of robust transparent thin films with enhanced dielectric permittivity. A range of proteins sources, additives and concentrations allowed for us to control the dielectric permittivity from εr = 4 to 50. The proteins screened came from animal and plant sources. The films were formed from drying a water suspension of the CNC and proteins through evaporation-induced self-assembly. This yielded nano-layered structures with very high specific surface areas, ideal for energy storage devices. The resulting films were characterized with respect to the electrical, mechanical, piezoelectric, and optical properties to be compared. Electrically conductive (σ = 1.53 × 103 S/m) CNC films were prepared with carbon nanotubes (CNT). The fabricated films were used to make flexible, sustainable, and degradable capacitors by layering protein-based films between CNC-CNT composite films.

2.
PNAS Nexus ; 2(4): pgad069, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37056470

RESUMO

Mosquitoes are the deadliest of all combined insects and animals affecting millions and killing hundreds or thousands of people each year. Existing protection methods however are limited and include volatile compounds that actively repel mosquitoes such as N,N-Diethyl-meta-toluamide (DEET) or different essential oils such as geraniol and citronella. Most are odorous compounds and require organic solvents for dispersion. This work investigates the barrier properties of cellulose nanocrystals (CNCs). CNCs are known to self-assemble in strong, transparent, chemical barrier films. They are fully bio-based, and their surface chemistry is ideal for aqueous dispersion of many compounds. This work saw a significant 80% decrease in feeding on human skin when a thin CNC coat was applied. The effect was further confirmed by artificial feeding on Aedes aegypti wherein CNC appears to act as a chemical camouflage to the many cues sought by the insects. The combined effect of CNC with indole reduced egg laying post exposure to mammalian blood close to null with 99.4% less eggs as compared to control. The chemical barrier effect was assessed through a simple headspace experiment showing that the same CNC coat blocked the passage of ammonium hydroxide vapor, a commonly used mosquito attractant, when applied on a filter paper membrane.

3.
Biomacromolecules ; 23(5): 2098-2105, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35289591

RESUMO

Cellulose nanocrystals (CNCs) are composed of chiral cellulose units, which form chiral nematic liquid crystals in water that, upon drying, self-assemble to more complex spiral chiral sheets. This secondary structure arrangement is found to change with an external magnetic or electric field. Here, we show that one of the basic organization driving forces is electron spin, which is produced as the charge redistributes in the organization process of the chiral building blocks. It is important to stress that the electron spin-exchange interactions supply the original driving force and not the magnetic field per se. The results present the first utilization of the chiral-induced spin selectivity (CISS) effect in sugars, enabling one to regulate the CNC bottom-up fabrication process. Control is demonstrated on the organization order of the CNC by utilizing different magnetization directions of the ferromagnetic surface. The produced spin is probed using a simple Hall device. The measured Hall resistance shows that the CNC sheets' arrangement is affected during the first four hours as long as the CNC is in its wet phase. On introducing the 1,2,3,4-butanetetracarboxylic acid cross-linker into the CNC sheet, the packing density of the CNC helical structure is enhanced, presenting an increase in the Hall resistance and the chiral state.


Assuntos
Cristais Líquidos , Nanopartículas , Celulose/química , Cristais Líquidos/química , Nanopartículas/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...