Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 126(21): 9076-9090, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35686224

RESUMO

A general procedure based on electrostatic self-assembly for preparing nanocomposites based on carbon nanotubes (CNTs) and ternary chalcogenide semiconductor nanoparticles is shown. This was achieved by surface functionalization of the single components through well-established protocols, for CNTs, and a transferable general strategy for the nanoparticles. Heterostructures were then synthesized through electrostatic interaction between oppositely charged components. Structural, colloidal, and optical properties were characterized by transmission electron microscopy, X-ray diffraction, infrared spectroscopy, dynamic light scattering, ζ-potential, and absorption- and (time-resolved) photoluminescence measurements. Interestingly, the nanocomposites showed a blue shift in their excitation and emission spectra when compared to the pure nanoparticles but only when analyzed in powder form. Further investigations in the form of density functional theory (DFT) calculations were performed to evaluate the origin of the change in the optical properties.

2.
Materials (Basel) ; 13(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962171

RESUMO

The linear photochemical response of materials depends on two critical parameters: the size of the optical band gap determines the onset of optical excitation, whereas the absolute energetic positions of the band edges define the reductive or oxidative character of photo-generated electrons and holes. Tuning these characteristics is necessary for many potential applications and can be achieved through changes in the bulk composition or particle size, adjustment of the surface chemistry or the application of electrostatic fields. In this contribution the influence of surface chemistry and fields is investigated systematically with the help of standard DFT calculations for a typical case, namely composites prepared from ZnS quantum dots and functionalized carbon nanotubes. After comparing results with existing qualitative and quantitative experimental data, it is shown conclusively, that the details of the surface chemistry (especially defects) in combination with electrostatic fields have the largest influence. In conclusion, the development of novel or improved photoresponsive materials therefore will have to integrate a careful analysis of the interplay between surface chemistry, surface charges and interaction with the material environment or substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...