Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764509

RESUMO

ß-N-methylamino-L-alanine (BMAA) and its isomers, 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)-glycine (AEG), along with microcystins (MCs)-RR, -LR, and -YR (the major MC congeners), are cyanotoxins that can cause detrimental health and environmental impacts during toxic blooms. Currently, there are no reverse-phase (RP) LC-MS/MS methods for the simultaneous detection and quantification of BMAA, its isomers, and the major MCs in a single analysis; therefore, multiple analyses are required to assess the toxic load of a sample. Here, we present a newly developed and validated method for the detection and quantification of BMAA, 2,4-DAB, AEG, MC-LR, MC-RR, and MC-YR using RP LC-MS/MS. Method validation was performed, assessing linearity (r2 > 0.996), accuracy (>90% recovery for spiked samples), precision (7% relative standard deviation), and limits of detection (LODs) and quantification (LOQs) (ranging from 0.13 to 1.38 ng mL-1). The application of this combined cyanotoxin analysis on a culture of Microcystis aeruginosa resulted in the simultaneous detection of 2,4-DAB (0.249 ng mg-1 dry weight (DW)) and MC-YR (4828 ng mg-1 DW). This study provides a unified method for the quantitative analysis of BMAA, its isomers, and three MC congeners in natural environmental samples.


Assuntos
Microcistinas , Espectrometria de Massas em Tandem , Cromatografia Líquida , Toxinas de Cianobactérias
2.
Exp Mol Med ; 54(3): 273-284, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35288649

RESUMO

Although bone marrow-derived mesenchymal stromal cells (BM-MSCs) have been identified as a major cellular source of fibrosis, the exact molecular mechanism and signaling pathways involved have not been identified thus far. Here, we show that BM-MSCs contribute to fibrosis in myeloproliferative neoplasms (MPNs) by differentiating into αSMA-positive myofibroblasts. These cells display a dysregulated extracellular matrix with increased FN1 production and secretion of profibrotic MMP9 compared to healthy donor cells. Fibrogenic TGFß and inflammatory JAK2/STAT3 and NFκB signaling pathway activity is increased in BM-MSCs of MPN patients. Moreover, coculture with mononuclear cells from MPN patients was sufficient to induce fibrosis in healthy BM-MSCs. Inhibition of JAK1/2, SMAD3 or NFκB significantly reduced the fibrotic phenotype of MPN BM-MSCs and was able to prevent the development of fibrosis induced by coculture of healthy BM-MSCs and MPN mononuclear cells with overly active JAK/STAT signaling, underlining their involvement in fibrosis. Combined treatment with JAK1/2 and SMAD3 inhibitors showed synergistic and the most favorable effects on αSMA and FN1 expression in BM-MSCs. These results support the combined inhibition of TGFß and inflammatory signaling to extenuate fibrosis in MPN.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Medula Óssea/metabolismo , Medula Óssea/patologia , Células da Medula Óssea/metabolismo , Fibrose , Humanos , Células-Tronco Mesenquimais/metabolismo , Neoplasias/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...