Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 29(3): 687-696, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34611297

RESUMO

Ribosome biogenesis is an essential, energy demanding process whose deregulation has been implicated in cancer, aging, and neurodegeneration. Ribosome biogenesis is therefore under surveillance of pathways including the p53 tumor suppressor. Here, we first performed a high-content siRNA-based screen of 175 human ribosome biogenesis factors, searching for impact on p53. Knock-down of 4 and 35 of these proteins in U2OS cells reduced and increased p53 abundance, respectively, including p53 accumulation after depletion of BYSL, DDX56, and WDR75, the effects of which were validated in several models. Using complementary approaches including subcellular fractionation, we demonstrate that endogenous human WDR75 is a nucleolar protein and immunofluorescence analysis of ectopic GFP-tagged WDR75 shows relocation to nucleolar caps under chemically induced nucleolar stress, along with several canonical nucleolar proteins. Mechanistically, we show that WDR75 is required for pre-rRNA transcription, through supporting the maintenance of physiological levels of RPA194, a key subunit of the RNA polymerase I. Furthermore, WDR75 depletion activated the RPL5/RPL11-dependent p53 stabilization checkpoint, ultimately leading to impaired proliferation and cellular senescence. These findings reveal a crucial positive role of WDR75 in ribosome biogenesis and provide a resource of human ribosomal factors the malfunction of which affects p53.


Assuntos
Proteínas Ribossômicas , Proteína Supressora de Tumor p53/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Precursores de RNA/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/genética
2.
Trends Cancer ; 7(1): 57-76, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32948502

RESUMO

Ribosome biogenesis (RiBi) is one of the most complex and energy demanding processes in human cells, critical for cell growth and proliferation. Strong causal links between inherited and acquired impairment in RiBi with cancer pathogenesis are emerging, pointing to RiBi as an attractive therapeutic target for cancer. Here, we will highlight new knowledge about causes of excessive or impaired RiBi and the impact of these changes on protein synthesis. We will also discuss how new knowledge about secondary consequences of dysregulated RiBi and protein synthesis, including proteotoxic stress, metabolic alterations, adaptive transcriptional and translational programs, and the impaired ribosome biogenesis checkpoint (IRBC) provide a foundation for the development of new anticancer therapies.


Assuntos
Benzotiazóis/farmacologia , Carcinogênese/efeitos dos fármacos , Naftiridinas/farmacologia , Neoplasias/tratamento farmacológico , RNA Polimerase I/antagonistas & inibidores , Ribossomos/metabolismo , Benzotiazóis/uso terapêutico , Carcinogênese/genética , Carcinogênese/patologia , Reparo do DNA/genética , Humanos , Mutação , Naftiridinas/uso terapêutico , Neoplasias/genética , Neoplasias/patologia , Biogênese de Organelas , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Polimerase I/metabolismo , Proteínas Ribossômicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Mutações Sintéticas Letais , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação/efeitos dos fármacos
3.
Oncogene ; 39(17): 3443-3457, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32108164

RESUMO

Perturbations in ribosome biogenesis have been associated with cancer. Such aberrations activate p53 through the RPL5/RPL11/5S rRNA complex-mediated inhibition of HDM2. Studies using animal models have suggested that this signaling pathway might constitute an important anticancer barrier. To gain a deeper insight into this issue in humans, here we analyze somatic mutations in RPL5 and RPL11 coding regions, reported in The Cancer Genome Atlas and International Cancer Genome Consortium databases. Using a combined computational and statistical approach, complemented by a range of biochemical and functional analyses in human cancer cell models, we demonstrate the existence of several mechanisms by which RPL5 mutations may impair wild-type p53 upregulation and ribosome biogenesis. Unexpectedly, the same approach provides only modest evidence for a similar role of RPL11, suggesting that RPL5 represents a preferred target during human tumorigenesis in cancers with wild-type p53. Furthermore, we find that several functional cancer-associated RPL5 somatic mutations occur as rare germline variants in general population. Our results shed light on the so-far enigmatic role of cancer-associated mutations in genes encoding ribosomal proteins, with implications for our understanding of the tumor suppressive role of the RPL5/RPL11/5S rRNA complex in human malignancies.


Assuntos
Mutação , Neoplasias , Proteínas Proto-Oncogênicas c-mdm2 , Proteínas Ribossômicas , Ribossomos , Proteína Supressora de Tumor p53 , Células A549 , Feminino , Humanos , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA Ribossômico 5S/genética , RNA Ribossômico 5S/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Oncogene ; 37(18): 2351-2366, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29429989

RESUMO

The nucleolus is the major site for synthesis of ribosomes, complex molecular machines that are responsible for protein synthesis. A wealth of research over the past 20 years has clearly indicated that both quantitative and qualitative alterations in ribosome biogenesis can drive the malignant phenotype via dysregulation of protein synthesis. However, numerous recent proteomic, genomic, and functional studies have implicated the nucleolus in the regulation of processes that are unrelated to ribosome biogenesis, including DNA-damage response, maintenance of genome stability and its spatial organization, epigenetic regulation, cell-cycle control, stress responses, senescence, global gene expression, as well as assembly or maturation of various ribonucleoprotein particles. In this review, the focus will be on features of rDNA genes, which make them highly vulnerable to DNA damage and intra- and interchromosomal recombination as well as built-in mechanisms that prevent and repair rDNA damage, and how dysregulation of this interplay affects genome-wide DNA stability, gene expression and the balance between euchromatin and heterochromatin. We will also present the most recent insights into how malfunction of these cellular processes may be a central driving force of human malignancies, and propose a promising new therapeutic approach for the treatment of cancer.


Assuntos
Nucléolo Celular/fisiologia , Instabilidade Genômica/fisiologia , Neoplasias/patologia , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Humanos
5.
Nat Rev Cancer ; 18(2): 134, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29368746

RESUMO

This corrects the article DOI: 10.1038/nrc.2017.104.

6.
Nat Rev Cancer ; 18(1): 51-63, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29192214

RESUMO

The ribosome is a complex molecular machine composed of numerous distinct proteins and nucleic acids and is responsible for protein synthesis in every living cell. Ribosome biogenesis is one of the most multifaceted and energy- demanding processes in biology, involving a large number of assembly and maturation factors, the functions of which are orchestrated by multiple cellular inputs, including mitogenic signals and nutrient availability. Although causal associations between inherited mutations affecting ribosome biogenesis and elevated cancer risk have been established over the past decade, mechanistic data have emerged suggesting a broader role for dysregulated ribosome biogenesis in the development and progression of most spontaneous cancers. In this Opinion article, we highlight the most recent findings that provide new insights into the molecular basis of ribosome biogenesis in cancer and offer our perspective on how these observations present opportunities for the design of new targeted cancer treatments.


Assuntos
Neoplasias/patologia , Biossíntese de Proteínas/fisiologia , Ribossomos/fisiologia , Animais , Proliferação de Células/fisiologia , Humanos , Neoplasias/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Transdução de Sinais/fisiologia
8.
Proc Natl Acad Sci U S A ; 114(4): E496-E505, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-27994142

RESUMO

The microRNA miR-504 targets TP53 mRNA encoding the p53 tumor suppressor. miR-504 resides within the fibroblast growth factor 13 (FGF13) gene, which is overexpressed in various cancers. We report that the FGF13 locus, comprising FGF13 and miR-504, is transcriptionally repressed by p53, defining an additional negative feedback loop in the p53 network. Furthermore, we show that FGF13 1A is a nucleolar protein that represses ribosomal RNA transcription and attenuates protein synthesis. Importantly, in cancer cells expressing high levels of FGF13, the depletion of FGF13 elicits increased proteostasis stress, associated with the accumulation of reactive oxygen species and apoptosis. Notably, stepwise neoplastic transformation is accompanied by a gradual increase in FGF13 expression and increased dependence on FGF13 for survival ("nononcogene addiction"). Moreover, FGF13 overexpression enables cells to cope more effectively with the stress elicited by oncogenic Ras protein. We propose that, in cells in which activated oncogenes drive excessive protein synthesis, FGF13 may favor survival by maintaining translation rates at a level compatible with the protein quality-control capacity of the cell. Thus, FGF13 may serve as an enabler, allowing cancer cells to evade proteostasis stress triggered by oncogene activation.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias/metabolismo , Ribossomos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Fatores de Crescimento de Fibroblastos/genética , Humanos , MicroRNAs/genética , Neoplasias/genética , Proteína Supressora de Tumor p53/genética
9.
Semin Cancer Biol ; 37-38: 36-50, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26721423

RESUMO

The nucleolus is the most prominent nuclear substructure assigned to produce ribosomes; molecular machines that are responsible for carrying out protein synthesis. To meet the increased demand for proteins during cell growth and proliferation the cell must increase protein synthetic capacity by upregulating ribosome biogenesis. While larger nucleolar size and number have been recognized as hallmark features of many tumor types, recent evidence has suggested that, in addition to overproduction of ribosomes, decreased ribosome biogenesis as well as qualitative changes in this process could also contribute to tumor initiation and cancer progression. Furthermore, the nucleolus has become the focus of intense attention for its involvement in processes that are clearly unrelated to ribosome biogenesis such as sensing and responding to endogenous and exogenous stressors, maintenance of genome stability, regulation of cell-cycle progression, cellular senescence, telomere function, chromatin structure, establishment of nuclear architecture, global regulation of gene expression and biogenesis of multiple ribonucleoprotein particles. The fact that dysregulation of many of these fundamental cellular processes may contribute to the malignant phenotype suggests that normal functioning of the nucleolus safeguards against the development of cancer and indicates its potential as a therapeutic approach. Here we review the recent advances made toward understanding these newly-recognized nucleolar functions and their roles in normal and cancer cells, and discuss possible future research directions.


Assuntos
Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Neoplasias/patologia , Nucléolo Celular/patologia , Segregação de Cromossomos , Dano ao DNA , DNA Ribossômico , Epigênese Genética , Instabilidade Genômica , Humanos , Mitose , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Telômero
10.
Oncoscience ; 2(11): 892-3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26697512
11.
Int Orthop ; 39(1): 161-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25300398

RESUMO

PURPOSE: Iron overload accelerates bone loss in mice lacking the bone morphogenetic protein 6 (Bmp6) gene, which is the key endogenous regulator of hepcidin, iron homeostasis gene. We investigated involvement of other BMPs in preventing haemochromatosis and subsequent osteopenia in Bmp6-/- mice. METHODS: Iron-treated wild-type (WT) and Bmp6-/- mice were analysed for hepcidin messenger RNA (mRNA) and tissue and blood BMP levels by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), immunohistochemistry, Western blot, enzyme-linked immunosorbent assay (ELISA) and proximity extension assay. BMPs labeled with technetium-99m were used in pharmacokinetic studies. RESULTS: In WT mice, 4 h following iron challenge, liver Bmp6 and hepcidin expression were increased, while expression of other Bmps was not affected. In parallel, we provided the first evidence that BMP6 circulates in WT mice and that iron increased the BMP6 serum level and the specific liver uptake of (99m)Tc-BMP6. In Bmp6-/- mice, iron challenge led to blunted activation of liver Smad signaling and hepcidin expression with a delay of 24 h, associated with increased Bmp5 and Bmp7 expression and increased Bmp2, 4, 5 and 9 expression in the duodenum. Liver Bmp7 expression and increased circulating BMP9 eventually contributed to the late hepcidin response. This was further supported by exogenous BMP7 therapy resulting in an effective hepcidin expression followed by a rapid normalisation of plasma iron values and restored osteopenia in Bmp6-/- mice. CONCLUSION: In Bmp6-/- mice, iron activated endogenous compensatory mechanisms of other BMPs that were not sufficient for preventing hemochromatosis and bone loss. Administration of exogenous BMP7 was effective in correcting the plasma iron level and bone loss, indicating that BMP6 is an essential but not exclusive in vivo regulator of iron homeostasis.


Assuntos
Doenças Ósseas Metabólicas/tratamento farmacológico , Proteínas Morfogenéticas Ósseas/metabolismo , Sobrecarga de Ferro/tratamento farmacológico , Animais , Western Blotting , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/farmacologia , Ensaio de Imunoadsorção Enzimática , Feminino , Hepcidinas/metabolismo , Homeostase/fisiologia , Imuno-Histoquímica , Ferro/metabolismo , Fígado/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
12.
FEBS Lett ; 588(16): 2571-9, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-24747423

RESUMO

Cell proliferation and cell growth are two tightly linked processes, as the proliferation program cannot be executed without proper accumulation of cell mass, otherwise endangering the fate of the two daughter cells. It is therefore not surprising that ribosome biogenesis, a key element in cell growth, is regulated by many cell cycle regulators. This regulation is exerted transcriptionally and post-transcriptionally, in conjunction with numerous intrinsic and extrinsic signals. Those signals eventually converge at the nucleolus, the cellular compartment that is not only responsible for executing the ribosome biogenesis program, but also serves as a regulatory hub, responsible for integrating and transmitting multiple stress signals to the omnipotent cell fate gatekeeper, p53. In this review we discuss when, how and why p53 is activated upon ribosomal biogenesis stress, and how perturbation of this critical regulatory interplay may impact human disease.


Assuntos
Ribossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Nucléolo Celular/metabolismo , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
13.
Biochim Biophys Acta ; 1842(6): 817-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24514102

RESUMO

Errors in ribosome biogenesis can result in quantitative or qualitative defects in protein synthesis and consequently lead to improper execution of the genetic program and the development of specific diseases. Evidence has accumulated over the last decade suggesting that perturbation of ribosome biogenesis triggers a p53-activating checkpoint signaling pathway, often referred to as the ribosome biogenesis stress checkpoint pathway. Although it was originally suggested that p53 has a prominent role in preventing diseases by monitoring the fidelity of ribosome biogenesis, recent work has demonstrated that p53 activation upon impairment of ribosome biogenesis also mediates pathological manifestations in humans. Perturbations of ribosome biogenesis can trigger a p53-dependent checkpoint signaling pathway independent of DNA damage and the tumor suppressor ARF through inhibitory interactions of specific ribosomal components with the p53 negative regulator, Mdm2. Here we review the recent advances made toward understanding of this newly-recognized checkpoint signaling pathway, its role in health and disease, and discuss possible future directions in this exciting research field. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.


Assuntos
Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/genética , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Dano ao DNA/genética , Humanos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Transdução de Sinais , Ativação Transcricional , Proteína Supressora de Tumor p53/genética
14.
Nat Cell Biol ; 15(8): 967-77, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23851489

RESUMO

The DNA damage response (DDR) pathway and ARF function as barriers to cancer development. Although commonly regarded as operating independently of each other, some studies proposed that ARF is positively regulated by the DDR. Contrary to either scenario, we found that in human oncogene-transformed and cancer cells, ATM suppressed ARF protein levels and activity in a transcription-independent manner. Mechanistically, ATM activated protein phosphatase 1, which antagonized Nek2-dependent phosphorylation of nucleophosmin (NPM), thereby liberating ARF from NPM and rendering it susceptible to degradation by the ULF E3-ubiquitin ligase. In human clinical samples, loss of ATM expression correlated with increased ARF levels and in xenograft and tissue culture models, inhibition of ATM stimulated the tumour-suppressive effects of ARF. These results provide insights into the functional interplay between the DDR and ARF anti-cancer barriers, with implications for tumorigenesis and treatment of advanced tumours.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias/fisiopatologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Fator 1 de Ribosilação do ADP/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Transporte/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Masculino , Camundongos , Quinases Relacionadas a NIMA , Neoplasias/enzimologia , Neoplasias/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Ribossomos/metabolismo , Transdução de Sinais , Transplante Heterólogo , Proteína Supressora de Tumor p14ARF/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Proc Natl Acad Sci U S A ; 109(50): 20467-72, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23169665

RESUMO

Impairment of ribosomal biogenesis can activate the p53 protein independently of DNA damage. The ability of ribosomal proteins L5, L11, L23, L26, or S7 to bind Mdm2 and inhibit its ubiquitin ligase activity has been suggested as a critical step in p53 activation under these conditions. Here, we report that L5 and L11 are particularly important for this response. Whereas several other newly synthesized ribosomal proteins are degraded by proteasomes upon inhibition of Pol I activity by actinomycin D, L5 and L11 accumulate in the ribosome-free fraction where they bind to Mdm2. This selective accumulation of free L5 and L11 is due to their mutual protection from proteasomal degradation. Furthermore, the endogenous, newly synthesized L5 and L11 continue to be imported into nucleoli even after nucleolar disruption and colocalize with Mdm2, p53, and promyelocytic leukemia protein. This suggests that the disrupted nucleoli may provide a platform for L5- and L11-dependent p53 activation, implying a role for the nucleolus in p53 activation by ribosomal biogenesis stress. These findings may have important implications with respect to understanding the pathogenesis of diseases caused by impaired ribosome biogenesis.


Assuntos
Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sequência de Bases , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Dactinomicina/farmacologia , Humanos , Camundongos , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Proteínas Ribossômicas/antagonistas & inibidores , Proteínas Ribossômicas/genética , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
16.
Mol Cell ; 45(2): 222-32, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22284678

RESUMO

Members of the ß-karyopherin family mediate nuclear import of ribosomal proteins and export of ribosomal subunits, both required for ribosome biogenesis. We report that transcription of the ß-karyopherin genes importin 7 (IPO7) and exportin 1 (XPO1), and several additional nuclear import receptors, is regulated positively by c-Myc and negatively by p53. Partial IPO7 depletion triggers p53 activation and p53-dependent growth arrest. Activation of p53 by IPO7 knockdown has distinct features of ribosomal biogenesis stress, with increased binding of Mdm2 to ribosomal proteins L5 and L11 (RPL5 and RPL11). Furthermore, p53 activation is dependent on RPL5 and RPL11. Of note, IPO7 and XPO1 are frequently overexpressed in cancer. Altogether, we propose that c-Myc and p53 counter each other in the regulation of elements within the nuclear transport machinery, thereby exerting opposing effects on the rate of ribosome biogenesis. Perturbation of this balance may play a significant role in promoting cancer.


Assuntos
Carioferinas/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Ribossômicas/metabolismo , Estresse Fisiológico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Exportina 1
17.
J Cell Biol ; 195(7): 1123-40, 2011 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-22201124

RESUMO

E-cadherin (CDH1) loss occurs frequently in carcinogenesis, contributing to invasion and metastasis. We observed that mouse and human epithelial cell lines overexpressing the replication licensing factor Cdc6 underwent phenotypic changes with mesenchymal features and loss of E-cadherin. Analysis in various types of human cancer revealed a strong correlation between increased Cdc6 expression and reduced E-cadherin levels. Prompted by these findings, we discovered that Cdc6 repressed CDH1 transcription by binding to the E-boxes of its promoter, leading to dissociation of the chromosomal insulator CTCF, displacement of the histone variant H2A.Z, and promoter heterochromatinization. Mutational analysis identified the Walker B motif and C-terminal region of Cdc6 as essential for CDH1 transcriptional suppression. Strikingly, CTCF displacement resulted in activation of adjacent origins of replication. These data demonstrate that Cdc6 acts as a molecular switch at the E-cadherin locus, linking transcriptional repression to activation of replication, and provide a telling example of how replication licensing factors could usurp alternative programs to fulfill distinct cellular functions.


Assuntos
Caderinas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/genética , DNA/genética , Regulação para Baixo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transcrição Gênica/genética , Motivos de Aminoácidos , Animais , Antígenos CD , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/química , Linhagem Celular , Cães , Histonas/metabolismo , Humanos , Camundongos , Camundongos SCID , Proteínas Nucleares/química , Oncogenes/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
18.
Respir Med ; 105 Suppl 1: S20-5, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22015081

RESUMO

Natural killer T (NKT) cells, a unique subgroup of lymphocytes with features of both T and natural killer (NK) cells, represent a bridge between innate and adaptive immunity. They have the ability to either promote or suppress immune responses. With these immunoregulatory functions, NKT cells have emerged as an important subset of lymphocytes with a protective role in some disorders, such as infections, cancer, and possibly sarcoidosis, and a pathogenic role in others, such as asthma, chronic obstructive pulmonary disease and hypersensitivity pneumonitis. Immunotherapeutic interventions to modulate the immune response by targeting iNKT cell functions has become a challenging field and has shown promising results for the development of new therapies.


Assuntos
Asma/imunologia , Doenças Pulmonares Intersticiais/imunologia , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Tuberculose/imunologia , Imunidade Adaptativa , Asma/fisiopatologia , Feminino , Humanos , Imunoterapia , Doenças Pulmonares Intersticiais/fisiopatologia , Masculino , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Subpopulações de Linfócitos T/imunologia , Tuberculose/fisiopatologia
19.
Hum Mol Genet ; 18(15): 2813-24, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19423553

RESUMO

The molecular mechanisms that control reproductive aging and menopausal age in females are poorly understood. Here, we provide genetic evidence that 3-phosphoinositide-dependent protein kinase-1 (PDK1) signaling in oocytes preserves reproductive lifespan by maintaining the survival of ovarian primordial follicles. In mice lacking the PDK1-encoding gene Pdk1 in oocytes, the majority of primordial follicles are depleted around the onset of sexual maturity, causing premature ovarian failure (POF) during early adulthood. We further showed that suppressed PDK1-Akt-p70 S6 kinase 1 (S6K1)-ribosomal protein S6 (rpS6) signaling in oocytes appears to be responsible for the loss of primordial follicles, and mice lacking the Rps6 gene in oocytes show POF similar to that in Pdk1-deficient mice. In combination with our earlier finding that phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in oocytes suppresses follicular activation, we have now pinpointed the molecular network involving phosphatidylinositol 3 kinase (PI3K)/PTEN-PDK1 signaling in oocytes that controls the survival, loss and activation of primordial follicles, which together determine reproductive aging and the length of reproductive life in females. Underactivation or overactivation of this signaling pathway in oocytes is shown to cause pathological conditions in the ovary, including POF and infertility.


Assuntos
Envelhecimento/metabolismo , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Feminino , Humanos , Expectativa de Vida , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/citologia , Folículo Ovariano/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Proteína S6 Ribossômica/genética , Proteína S6 Ribossômica/metabolismo , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo
20.
Mol Cell Biol ; 29(10): 2489-504, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19273598

RESUMO

Hypomorphic mutation in one allele of ribosomal protein l24 gene (Rpl24) is responsible for the Belly Spot and Tail (Bst) mouse, which suffers from defects of the eye, skeleton, and coat pigmentation. It has been hypothesized that these pathological manifestations result exclusively from faulty protein synthesis. We demonstrate here that upregulation of the p53 tumor suppressor during the restricted period of embryonic development significantly contributes to the Bst phenotype. However, in the absence of p53 a large majority of Rpl24(Bst/+) embryos die. We showed that p53 promotes survival of these mice via p21-dependent mechanism. Our results imply that activation of a p53-dependent checkpoint mechanism in response to various ribosomal protein deficiencies might also play a role in the pathogenesis of congenital malformations in humans.


Assuntos
Anormalidades do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Cor de Cabelo/genética , Anormalidades Musculoesqueléticas/genética , Proteínas Ribossômicas/metabolismo , Taxa de Sobrevida , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Gravidez , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Ribossômicas/genética , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...