Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14427, 2024 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910140

RESUMO

The study presents a series of examples of magnetic nanoparticle systems designed for the diagnosis of viral diseases. In this interdisciplinary work, we describe one of the most comprehensive synthetic approaches for the preparation and functionalization of smart nanoparticle systems for rapid and effective RT-PCR diagnostics and isolation of viral RNA. Twelve different organic ligands and inorganic porous silica were used for surface functionalization of the Fe3O4 magnetic core to increase the number of active centres for efficient RNA binding from human swab samples. Different nanoparticle systems with common beads were characterized by HRTEM, SEM, FT-IR, XRD, XPS and magnetic measurements. We demonstrate the application of the fundamental models modified to fit the experimental zero-field cooling magnetization data. We discuss the influence of the nanoparticle shell parameters (morphology, thickness, ligands) on the overall magnetic performance of the systems. The prepared nanoparticles were tested for the isolation of viral RNA from tissue samples infected with hepatitis E virus-HEV and from biofluid samples of SARS-CoV-2 positive patients. The efficiency of RNA isolation was quantified by RT-qPCR method.


Assuntos
COVID-19 , Nanopartículas de Magnetita , RNA Viral , SARS-CoV-2 , Dióxido de Silício , Dióxido de Silício/química , Humanos , Nanopartículas de Magnetita/química , RNA Viral/genética , RNA Viral/isolamento & purificação , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/virologia , Propriedades de Superfície , Patologia Molecular/métodos , Viroses/diagnóstico , Viroses/virologia
2.
Sci Rep ; 14(1): 9232, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649384

RESUMO

Due to the increasing demand for energy storage devices, the development of high-energy density batteries is very necessary. Lithium-sulfur (Li-S) batteries have gained wide interest due to their particularly high-energy density. However, even this type of battery still needs to be improved. Novel Cu(II)-based metal-organic framework STAM-1 was synthesized and applied as a composite cathode material as a sulfur host in the lithium-sulfur battery with the aim of regulating the redox kinetics of sulfur cathodes. Prepared STAM-1 was characterized by infrared spectroscopy at ambient temperature and after in-situ heating, elemental analysis, X-ray photoelectron spectroscopy and textural properties by nitrogen and carbon dioxide adsorption at - 196 and 0 °C, respectively. Results of the SEM showed that crystals of STAM-1 created a flake-like structure, the surface was uniform and porous enough for electrolyte and sulfur infiltration. Subsequently, STAM-1 was used as a sulfur carrier in the cathode construction of a Li-S battery. The charge/discharge measurements of the novel S/STAM-1/Super P/PVDF cathode demonstrated the initial discharge capacity of 452 mAh g-1 at 0.5 C and after 100 cycles of 430 mAh g-1, with Coulombic efficiency of 97% during the whole cycling procedure at 0.5 C. It was confirmed that novel Cu-based STAM-1 flakes could accelerate the conversion of sulfur species in the cathode material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...