Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 43(19): 2948-2955, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33775225

RESUMO

In this study, a biofilm model was developed for sulfur-based denitrification in a moving bed biofilm reactor (MBBR), including mass transport as well as the conversion kinetics of sulfur-oxidizing bacteria (SOB). The experimental reactor simulated received a synthetic wastewater containing nitrate, sulfide and thiosulfate. The substrate affinity of SOB for intermediary elemental sulfur (S0) was found the most sensitive parameter. After estimating this single parameter, the model could adequately describe the steady state performance of the experimental MBBR. The experimental and simulated mass balances indicated that a fraction of influent sulfur accumulated into intermediate S0. Furthermore, the simulations showed that SOB were active over the entire thickness of a 200 µm biofilm. The simulation results allowed to quantify the extent of diffusion and substrate limitation. Scenario analyses indicated that the specific nitrogen loading rate could be increased from 0.05 to 0.20 kg N.kg-1 VSS.day-1 (corresponding to 0.22-0.86 kg N.m-2.day-1 expressed per biofilm surface area) while maintaining nitrogen removal efficiencies above 70%. An increasing specific nitrogen loading rate in this range resulted in an almost linearly increasing specific nitrogen removal rate, independent from whether it was realized through a decreasing HRT, carrier filling ratio or biofilm thickness.


Assuntos
Biofilmes , Desnitrificação , Bactérias , Reatores Biológicos , Nitrogênio , Sulfetos , Enxofre , Águas Residuárias
2.
Sci Total Environ ; 810: 151247, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710429

RESUMO

The formation of hydrogen sulfide (H2S) during anaerobic digestion (AD) imposes constraints on the valorisation of biogas. So far, inorganic sulfur compounds -mainly sulfate - have been considered as the main contributors to H2S formation, while the contribution of organic sulfur compounds is mostly neglected. This study investigates the fate of organic and inorganic sulfur compounds during two-stage anaerobic digestion with intermediate thermal hydrolysis for treatment of primary and secondary sludge in a WWTP treating domestic wastewater. The results of a seven-week monitoring campaign showed an overall decrease of organic sulfur compounds in both stages of anaerobic digestion. Further fractionation of organic sulfur revealed a high conversion of the particulate organic fraction during the first digestion stage and of the soluble organic fraction during the second digestion stage. The decrease of soluble organic sulfur during the second digestion stage was attributed to the solubilisation and hydrolysis of sulfur-containing organic compounds during thermal hydrolysis. In both digestion stages, more organic sulfur was taken up than particulate inorganic sulfur (metal sulfide) was produced, indicating the formation of other reduced sulfur forms (e.g. H2S). Further batch experiments confirmed the role of organic sulfur uptake in the formation of H2S during anaerobic digestion as sulfate reduction only partly explained the total sulfide formed (H2S in biogas and precipitated FeS). Overall, the conversion of organic sulfur was demonstrated to play a major role in H2S formation (and thus the biogas quality), especially in case of thermal hydrolysis pretreatment.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Hidrólise , Enxofre
3.
Sci Total Environ ; 801: 149530, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34418627

RESUMO

Even though sulfur compounds and their transformations may strongly affect wastewater treatment processes, their importance in water resource recovery facilities (WRRF) operation remains quite unexplored, notably when it comes to full-scale and plant-wide characterization. This contribution presents a first-of-a-kind, plant-wide quantification of total sulfur mass flows for all water and sludge streams in a full-scale WRRF. Because of its important impact on (post-treatment) process operation, the gaseous emission of sulfur as hydrogen sulfide (H2S) was also included, thus enabling a comprehensive evaluation of sulfur flows. Data availability and quality were optimized by experimental design and data reconciliation, which were applied for the first time to total sulfur flows. Total sulfur flows were successfully balanced over individual process treatment units as well as the plant-wide system with only minor variation to their original values, confirming that total sulfur is a conservative quantity. The two-stage anaerobic digestion with intermediate thermal hydrolysis led to a decreased sulfur content of dewatered sludge (by 36%). Higher (gaseous) H2S emissions were observed in the second-stage digester (42% of total emission) than in the first one, suggesting an impact of thermal treatment on the production of H2S. While the majority of sulfur mass flow from the influent left the plant through the treated effluent (> 95%), the sulfur discharge through dewatered sludge and gaseous emissions are critical. The latter are indeed responsible for odour nuisance, lower biogas quality, SO2 emissions upon sludge combustion and corrosion effects.


Assuntos
Eliminação de Resíduos Líquidos , Recursos Hídricos , Esgotos , Enxofre , Águas Residuárias
4.
Water Res ; 201: 117337, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34167012

RESUMO

Anaerobic sewage treatment is a proven technology in warm climate regions, and sponge-bed trickling filters (SBTFs) are an important post-treatment technology to remove residual organic carbon and nitrogen. Even though SBTFs can achieve a reasonably good effluent quality, further process optimization is hampered by a lack of mechanistic understanding of the factors influencing nitrogen removal, notably when it comes to mainstream anaerobically treated sewage. In this study, the factors that control the performance of SBTFs following anaerobic (i.e., UASB) reactors for sewage treatment were investigated. A demo-scale SBTF fed with anaerobically pre-treated sewage was monitored for 300 days, showing a median nitrification efficiency of 79% and a median total nitrogen removal efficiency of 26%. Heterotrophic denitrification was limited by the low organic carbon content of the anaerobic effluent. It was demonstrated that nitrification was impaired by a lack of inorganic carbon rather than by alkalinity limitation. To properly describe inorganic carbon limitation in models, bicarbonate was added as a state variable and sigmoidal kinetics were applied. The resulting model was able to capture the overall long-term experimental behaviour. There was no nitrite accumulation, which indicated that nitrite oxidizing bacteria were little or less affected by the inorganic carbon limitation. Overall, this study indicated the vital role of influent characteristics and operating conditions concerning nitrogen conversions in SBTFs treating anaerobic effluent, thus facilitating further process optimization.


Assuntos
Desnitrificação , Nitrogênio , Anaerobiose , Reatores Biológicos , Carbono , Nitrificação , Nitrogênio/análise , Esgotos , Eliminação de Resíduos Líquidos
5.
Environ Technol ; 42(26): 4047-4056, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32188337

RESUMO

Models adapt constantly, usually increasing the degree of detail describing physical phenomena. In water resource recovery facilities, models based on mass and/or heat balances have been used to describe and improve operation. While both mass and heat balances have proven their worth individually, the question arises to which extent their coupling, which entails increased model complexity, warrants the supposedly more precise simulation results. In order to answer this question, the need for and effects of coupling mass and heat balances in modelling studies were evaluated in this work for a biological nitrogen removal process treating highly concentrated wastewater. This evaluation consisted on assessing the effect of the coupling of mass and heat balances on the prediction of: (1) nitrogen removal efficiency; (2) temperature; (3) heat recovery. In general, mass balances are sufficient for evaluating nitrogen removal efficiency and effluent nitrogen concentrations. If one desires to evaluate the effect of temperature changes (e.g. daily, weekly, seasonally) on nitrogen removal efficiency, the use of temperature profiles as an input variable to a mass balance-based model is recommended over the coupling of mass and heat balances. In terms of temperature prediction, considering a constant biological heat generation term in the heat balance model provides sufficient information - i.e. without the coupling of mass and heat balances. Also, for evaluating the heat recovery potential of the system, constant biological heat generation values provide valuable information, at least under normal operating conditions, i.e. when the solids retention time is large enough to maintain nitrification.


Assuntos
Nitrogênio , Esgotos , Reatores Biológicos , Desnitrificação , Temperatura Alta , Eliminação de Resíduos Líquidos , Águas Residuárias
6.
Water Res ; 140: 387-402, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29754044

RESUMO

Multivariate statistical analysis was applied to investigate the dependencies and underlying patterns between N2O emissions and online operational variables (dissolved oxygen and nitrogen component concentrations, temperature and influent flow-rate) during biological nitrogen removal from wastewater. The system under study was a full-scale reactor, for which hourly sensor data were available. The 15-month long monitoring campaign was divided into 10 sub-periods based on the profile of N2O emissions, using Binary Segmentation. The dependencies between operating variables and N2O emissions fluctuated according to Spearman's rank correlation. The correlation between N2O emissions and nitrite concentrations ranged between 0.51 and 0.78. Correlation >0.7 between N2O emissions and nitrate concentrations was observed at sub-periods with average temperature lower than 12 °C. Hierarchical k-means clustering and principal component analysis linked N2O emission peaks with precipitation events and ammonium concentrations higher than 2 mg/L, especially in sub-periods characterized by low N2O fluxes. Additionally, the highest ranges of measured N2O fluxes belonged to clusters corresponding with NO3-N concentration less than 1 mg/L in the upstream plug-flow reactor (middle of oxic zone), indicating slow nitrification rates. The results showed that the range of N2O emissions partially depends on the prior behavior of the system. The principal component analysis validated the findings from the clustering analysis and showed that ammonium, nitrate, nitrite and temperature explained a considerable percentage of the variance in the system for the majority of the sub-periods. The applied statistical methods, linked the different ranges of emissions with the system variables, provided insights on the effect of operating conditions on N2O emissions in each sub-period and can be integrated into N2O emissions data processing at wastewater treatment plants.


Assuntos
Óxido Nitroso/análise , Eliminação de Resíduos Líquidos/métodos , Compostos de Amônio/análise , Compostos de Amônio/metabolismo , Reatores Biológicos , Análise Multivariada , Nitratos/análise , Nitratos/metabolismo , Nitrificação , Nitritos/análise , Nitritos/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Oxigênio/análise , Oxigênio/metabolismo , Temperatura , Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/estatística & dados numéricos , Águas Residuárias/química
7.
Water Sci Technol ; 78(11): 2270-2278, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30699078

RESUMO

This paper assesses the economics of heat recovery from biological wastewater treatment plants (WWTPs) treating concentrated wastewater, as higher concentrations result in higher heat generation in the treatment basin. A heat balance model has been applied to calculate the amount of recoverable heat from the system and the effect of the heat extraction capacity on the economics of a heat pump installation, evaluated using the internal rate of return. A sensitivity analysis has been performed to evaluate the effect of several parameters on the economics of heat recovery in this type of WWTP: the electricity price, the price of the fuel substituted by heating savings, the investment costs, the coefficient of performance (COP) and the amount of heat extracted from the system. It was calculated that the heat pump capacity has to be high enough to recover a significant amount of heat, but low enough to improve the economics of the system. The economic performance of the system is very dependent on the energy prices of both electrical power to run the heat pump and the fuel (heat) cost substituted by the heat pump.


Assuntos
Temperatura Alta , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Análise Custo-Benefício , Calefação
8.
Water Res ; 113: 97-110, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28199867

RESUMO

The objective of this paper is to report the effects that control/operational strategies may have on plant-wide phosphorus (P) transformations in wastewater treatment plants (WWTP). The development of a new set of biological (activated sludge, anaerobic digestion), physico-chemical (aqueous phase, precipitation, mass transfer) process models and model interfaces (between water and sludge line) were required to describe the required tri-phasic (gas, liquid, solid) compound transformations and the close interlinks between the P and the sulfur (S) and iron (Fe) cycles. A modified version of the Benchmark Simulation Model No. 2 (BSM2) (open loop) is used as test platform upon which three different operational alternatives (A1, A2, A3) are evaluated. Rigorous sensor and actuator models are also included in order to reproduce realistic control actions. Model-based analysis shows that the combination of an ammonium ( [Formula: see text] ) and total suspended solids (XTSS) control strategy (A1) better adapts the system to influent dynamics, improves phosphate [Formula: see text] accumulation by phosphorus accumulating organisms (XPAO) (41%), increases nitrification/denitrification efficiency (18%) and reduces aeration energy (Eaeration) (21%). The addition of iron ( [Formula: see text] ) for chemical P removal (A2) promotes the formation of ferric oxides (XHFO-H, XHFO-L), phosphate adsorption (XHFO-H,P, XHFO-L,P), co-precipitation (XHFO-H,P,old, XHFO-L,P,old) and consequently reduces the P levels in the effluent (from 2.8 to 0.9 g P.m-3). This also has an impact on the sludge line, with hydrogen sulfide production ( [Formula: see text] ) reduced (36%) due to iron sulfide (XFeS) precipitation. As a consequence, there is also a slightly higher energy production (Eproduction) from biogas. Lastly, the inclusion of a stripping and crystallization unit (A3) for P recovery reduces the quantity of P in the anaerobic digester supernatant returning to the water line and allows potential struvite ( [Formula: see text] ) recovery ranging from 69 to 227 kg.day-1 depending on: (1) airflow (Qstripping); and, (2) magnesium ( [Formula: see text] ) addition. All the proposed alternatives are evaluated from an environmental and economical point of view using appropriate performance indices. Finally, some deficiencies and opportunities of the proposed approach when performing (plant-wide) wastewater treatment modelling/engineering projects are discussed.


Assuntos
Fósforo/química , Águas Residuárias , Fosfatos/química , Esgotos/química , Eliminação de Resíduos Líquidos
9.
J Environ Manage ; 181: 163-171, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27341376

RESUMO

Ammonia, largely emitted by agriculture, involves a great risk for eutrophication and acidification leading to biodiversity loss. Air scrubbers are widely applied to reduce ammonia emission from pig and poultry housing facilities, but it is not always clear whether their performance meets the requirements. Besides, there is a growing international concern for the livestock related greenhouse gases methane and nitrous oxide but hardly any data concerning their fate in air scrubbers are available. This contribution presents the results from measurement campaigns conducted at a chemical, a biological and a two-stage biological air scrubber installed at pig housing facilities in Flanders. Ammonia, nitrous oxide and methane at the inlet and outlet of the air scrubbers were monitored on-line during one week using a photoacoustic gas monitor, which allowed to investigate diurnal fluctuations in the removal performance of air scrubbers. Additionally, the homogeneity of the air scrubbers, normally checked by gas detection tubes, was investigated in more detail using the continuous data. The biological air scrubber with extra nitrification tank performed well in terms of ammonia removal (86 ± 6%), while the two-stage air scrubber suffered from nitrifying bacteria inhibition. In the chemical air scrubber the pH was not kept constant, lowering the ammonia removal efficiency. A lower ammonia removal efficiency was found during the day, when the ventilation rate was the highest. Nitrous oxide was produced inside the biological and two-stage scrubber, resulting in an increased outlet concentration of more than 200%. Methane could not be removed in the different air scrubbers because of its low water solubility.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Monitoramento Ambiental , Abrigo para Animais , Metano/análise , Óxido Nitroso/análise , Agricultura , Animais , Poluição Ambiental/análise , Nitrificação , Suínos
10.
Water Res ; 95: 340-7, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27017195

RESUMO

Heat is an important resource in wastewater treatment plants (WWTPs) which can be recovered. A prerequisite to determine the theoretical heat recovery potential is an accurate heat balance model for temperature prediction. The insulating effect of foam present on the basin surface and its influence on temperature prediction were assessed in this study. Experiments were carried out to characterize the foam layer and its insulating properties. A refined dynamic temperature prediction model, taking into account the effect of foam, was set up. Simulation studies for a WWTP treating highly concentrated (manure) wastewater revealed that the foam layer had a significant effect on temperature prediction (3.8 ± 0.7 K over the year) and thus on the theoretical heat recovery potential (30% reduction when foam is not considered). Seasonal effects on the individual heat losses and heat gains were assessed. Additionally, the effects of the critical basin temperature above which heat is recovered, foam thickness, surface evaporation rate reduction and the non-absorbed solar radiation on the theoretical heat recovery potential were evaluated.


Assuntos
Temperatura , Águas Residuárias , Temperatura Alta , Modelos Teóricos
11.
Biotechnol Bioeng ; 112(12): 2550-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26084447

RESUMO

A large variety of microbial parameter values for nitrifying microorganisms has been reported in literature and was revised in this study. Part of the variety was attributed to the variety of analysis methods applied; it also reflects the large biodiversity in nitrifying systems. This diversity is mostly neglected in conventional nitrifying biofilm models. In this contribution, a one-dimensional, multispecies nitrifying biofilm model was set up, taking into account the large variety of the maximum growth rate, the substrate affinity and the yield of nitrifiers reported in literature. Microbial diversity was implemented in the model by considering 60 species of ammonia-oxidizing bacteria (AOB) and 60 species of nitrite-oxidizing bacteria (NOB). A steady-state analysis showed that operational conditions such as the nitrogen loading rate and the bulk liquid oxygen concentration influence both the macroscopic output as well as the microbial composition of the biofilm through the prevailing concentration of substrates throughout the biofilm. Considering two limiting resources (nitrogen and oxygen), the coexistence of two species of the same functional guild (AOB or NOB) was possible at steady state. Their spatial distribution in the biofilm could be explained using the r- and K-selection theory.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Interações Microbianas , Modelos Teóricos , Nitrificação , Meios de Cultura/química , Nitrogênio/metabolismo , Oxigênio/metabolismo
12.
Water Res ; 73: 323-31, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25697694

RESUMO

Anaerobic nitrogen removal technologies offer advantages in terms of energy and cost savings over conventional nitrification-denitrification systems. A mathematical model was constructed to evaluate the influence of process operation on the coexistence of nitrite dependent anaerobic methane oxidizing bacteria (n-damo) and anaerobic ammonium oxidizing bacteria (anammox) in a single granule. The nitrite and methane affinity constants of n-damo bacteria were measured experimentally. The biomass yield of n-damo bacteria was derived from experimental data and a thermodynamic state analysis. Through simulations, it was found that the possible survival of n-damo besides anammox bacteria was sensitive to the nitrite/ammonium influent ratio. If ammonium was supplied in excess, n-damo bacteria were outcompeted. At low biomass concentration, n-damo bacteria lost the competition against anammox bacteria. When the biomass loading closely matched the biomass concentration needed for full nutrient removal, strong substrate competition occurred resulting in oscillating removal rates. The simulation results further reveal that smaller granules enabled higher simultaneous ammonium and methane removal efficiencies. The implementation of simultaneous anaerobic methane and ammonium removal will decrease greenhouse gas emissions, but an economic analysis showed that adding anaerobic methane removal to a partial nitritation/anammox process may increase the aeration costs with over 20%. Finally, some considerations were given regarding the practical implementation of the process.


Assuntos
Compostos de Amônio/metabolismo , Bactérias Anaeróbias/metabolismo , Metano/metabolismo , Nitritos/metabolismo , Esgotos/química , Eliminação de Resíduos Líquidos , Anaerobiose , Biomassa , Reatores Biológicos , Modelos Teóricos , Oxirredução
13.
Water Res ; 68: 793-803, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25465719

RESUMO

N2O emission from wastewater treatment plants is high of concern due to the strong environmental impact of this greenhouse gas. Good understanding of the factors affecting the emission and formation of this gas is crucial to minimize its impact. This study addressed the investigation of the N2O emission dynamics in a full-scale one-stage granular sludge reactor performing partial nitritation-anammox (PNA) operated at a N-loading of 1.75 kg NH4⁺-N m⁻³ d⁻¹. A monitoring campaign was conducted, gathering on-line data of the N2O concentration in the off-gas of the reactor as well as of the ammonium and nitrite concentrations in the liquid phase. The N2O formation rate and the liquid N2O concentration profile were calculated from the gas phase measurements. The mean (gaseous) N2O-N emission obtained was 2.0% of the total incoming nitrogen during normal reactor operation. During normal operation of the reactor under variable aeration rate, intense aeration resulted in higher N2O emission and formation than during low aeration periods (mean N2O formation rate of 0.050 kg N m⁻³ d⁻¹ for high aeration and 0.029 kg N m⁻³ d⁻¹ for low aeration). Accumulation of N2O in the liquid phase was detected during low aeration periods and was accompanied by a relatively lower ammonium conversion rate, while N2O stripping was observed once the aeration was increased. During a dedicated experiment, gas recirculation without fresh air addition into the reactor led to the consumption of N2O, while accumulation of N2O was not detected. The transition from a prolonged period without fresh air addition and with little recirculation to enhanced aeration with fresh air addition resulted in the highest N2O formation (0.064 kg N m⁻³ d⁻¹). The results indicate that adequate aeration control may be used to minimize N2O emissions from PNA reactors.


Assuntos
Ar , Compostos de Amônio/metabolismo , Reatores Biológicos , Nitrificação , Óxido Nitroso/metabolismo , Esgotos/química , Movimentos do Ar , Anaerobiose , Nitritos/metabolismo , Oxirredução , Reprodutibilidade dos Testes , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos
14.
Environ Technol ; 36(5-8): 861-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25224566

RESUMO

Simple titration methods certainly deserve consideration for on-site routine monitoring of volatile fatty acid (VFA) concentration and alkalinity during anaerobic digestion (AD), because of their simplicity, speed and cost-effectiveness. In this study, the 5 and 8 pH point titration methods for measuring the VFA concentration and carbonate system alkalinity (H2CO3*-alkalinity) were assessed and compared. For this purpose, synthetic solutions with known H2CO3*-alkalinity and VFA concentration as well as samples from anaerobic digesters treating three different kind of solid wastes were analysed. The results of these two related titration methods were verified with photometric and high-pressure liquid chromatography measurements. It was shown that photometric measurements lead to overestimations of the VFA concentration in the case of coloured samples. In contrast, the 5 pH point titration method provides an accurate estimation of the VFA concentration, clearly corresponding with the true value. Concerning the H2CO3*-alkalinity, the most accurate and precise estimations, showing very similar results for repeated measurements, were obtained using the 8 pH point titration. Overall, it was concluded that the 5 pH point titration method is the preferred method for the practical monitoring of AD of solid wastes due to its robustness, cost efficiency and user-friendliness.


Assuntos
Ácidos Graxos Voláteis/análise , Resíduos de Alimentos , Gerenciamento de Resíduos , Anaerobiose , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Fotometria
15.
Water Sci Technol ; 69(1): 208-16, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24434989

RESUMO

The dynamic reactor behaviour of a nitrifying inverse turbulent bed reactor, operated at varying loading rate, was described with a one-dimensional two-step nitrification biofilm model. In contrast with conventional biofilm models, this model includes the competition between two genetically different populations of ammonia-oxidizing bacteria (AOB), besides nitrite-oxidizing bacteria (NOB). Previously gathered experimental evidence showed that different loading rates in the reactor resulted in a change in the composition of the AOB community, besides a different nitrifying performance. The dissolved oxygen concentration in the bulk liquid was put forward as the key variable governing the experimentally observed shift from Nitrosomonas europaea (AOB1) to Nitrosomonas sp. (AOB2), which was confirmed by the developed one-dimensional biofilm model. Both steady state and dynamic analysis showed that the influence of microbial growth and endogenous respiration parameters as well as external mass transfer limitation have a clear effect on the competition dynamics. Overall, it was shown that the biomass distribution profiles of the coexisting AOB reflected the ecological niches created by substrate gradients.


Assuntos
Compostos de Amônio/metabolismo , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Nitrosomonas/metabolismo , Nitrosomonas europaea/metabolismo
18.
Environ Technol ; 34(9-12): 1555-66, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24191490

RESUMO

The emission of greenhouse gases, such as N2O, from wastewater treatment plants is a matter of growing concern. Denitrification by ammonia-oxidizing bacteria (AOB) has been identified as the main N2O producing pathway. To estimate N2O emissions during biological nitrogen removal, reliable mathematical models are essential. In this work, a mathematical model for NO (a precursor for N2O formation) and N2O formation by AOB is presented. Based on mechanistic grounds, two possible reaction mechanisms for NO and N2O formation are distinguished, which differ in the origin of the reducing equivalents needed for denitrification by AOB. These two scenarios have been compared in a simulation study, assessing the influence of the aeration/stripping rate and the resulting dissolved oxygen (DO) concentration on the NO and N2O emission from a SHARON partial nitritation reactor. The study of the simulated model behaviour and its comparison with previously published experimental data serves in elucidating the true NO and N2O formation mechanism.


Assuntos
Poluentes Atmosféricos/análise , Recuperação e Remediação Ambiental , Modelos Biológicos , Óxido Nítrico/análise , Nitrosomonas/metabolismo , Óxido Nitroso/análise , Poluentes Atmosféricos/química , Poluentes Atmosféricos/metabolismo , Compostos de Amônio/análise , Compostos de Amônio/química , Compostos de Amônio/metabolismo , Reatores Biológicos/microbiologia , Simulação por Computador , Efeito Estufa , Resíduos Industriais , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxido Nitroso/química , Óxido Nitroso/metabolismo , Oxigênio/química , Oxigênio/metabolismo , Purificação da Água
19.
Water Sci Technol ; 68(1): 1-15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23823534

RESUMO

As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work already being done within the context of the benchmarking simulation models (BSMs) or applicable work in the wider literature. Of key importance is increasing capability, usability and transparency of the BSM package while avoiding unnecessary complexity.


Assuntos
Benchmarking , Modelos Teóricos , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...