Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 286, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090543

RESUMO

BACKGROUND: Bile acids (BAs) are steroid-derived molecules with important roles in digestion, the maintenance of host metabolism, and immunomodulation. Primary BAs are synthesized by the host, while secondary BAs are produced by the gut microbiome through transformation of the former. The regulation of microbial production of secondary BAs is not well understood, particularly the production of 7-dehydroxylated BAs, which are the most potent agonists for host BA receptors. The 7-dehydroxylation of cholic acid (CA) is well established and is linked to the expression of a bile acid-inducible (bai) operon responsible for this process. However, little to no 7-dehydroxylation has been reported for other host-derived BAs (e.g., chenodeoxycholic acid, CDCA or ursodeoxycholic acid, UDCA). RESULTS: Here, we demonstrate that the 7-dehydroxylation of CDCA and UDCA by the human isolate Clostridium scindens is induced when CA is present, suggesting that CA-dependent transcriptional regulation is required for substantial 7-dehydroxylation of these primary BAs. This is supported by the finding that UDCA alone does not promote expression of bai genes. CDCA upregulates expression of the bai genes but the expression is greater when CA is present. In contrast, the murine isolate Extibacter muris exhibits a distinct response; CA did not induce significant 7-dehydroxylation of primary BAs, whereas BA 7-dehydroxylation was promoted upon addition of germ-free mouse cecal content in vitro. However, E. muris was found to 7-dehydroxylate in vivo. CONCLUSIONS: The distinct expression responses amongst strains indicate that bai genes are regulated differently. CA promoted bai operon gene expression and the 7-dehydroxylating activity in C. scindens strains. Conversely, the in vitro activity of E. muris was promoted only after the addition of cecal content and the isolate did not alter bai gene expression in response to CA. The accessory gene baiJ was only upregulated in the C. scindens ATCC 35704 strain, implying mechanistic differences amongst isolates. Interestingly, the human-derived C. scindens strains were also capable of 7-dehydroxylating murine bile acids (muricholic acids) to a limited extent. This study shows novel 7-dehydroxylation activity in vitro resulting from the presence of CA and suggests distinct bai gene expression across bacterial species.


Assuntos
Ácidos e Sais Biliares , Ácido Cólico , Ácido Cólico/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Camundongos , Humanos , Clostridium/metabolismo , Clostridium/genética , Regulação Bacteriana da Expressão Gênica , Hidroxilação , Óperon , Ácido Quenodesoxicólico/metabolismo , Ácido Ursodesoxicólico/metabolismo , Microbioma Gastrointestinal
2.
Gut Microbes ; 16(1): 2323233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465624

RESUMO

Bile acid transformation is a common gut microbiome activity that produces secondary bile acids, some of which are important for human health. One such process, 7α-dehydroxylation, converts the primary bile acids, cholic acid and chenodeoxycholic acid, to deoxycholic acid and lithocholic acid, respectively. This transformation requires a number of enzymes, generally encoded in a bile acid-inducible (bai) operon and consists of multiple steps. Some 7α-dehydroxylating bacteria also harbor additional genes that encode enzymes with potential roles in this pathway, but little is known about their functions. Here, we purified 11 enzymes originating either from the bai operon or encoded at other locations in the genome of Clostridium scindens strain ATCC 35704. Enzyme activity was probed in vitro under anoxic conditions to characterize the biochemical pathway of chenodeoxycholic acid 7α-dehydroxylation. We found that more than one combination of enzymes can support the process and that a set of five enzymes, including BaiJ that is encoded outside the bai operon, is sufficient to achieve the transformation. We found that BaiJ, an oxidoreductase, exhibits an activity that is not harbored by the homologous enzyme from another C. scindens strain. Furthermore, ligation of bile acids to coenzyme A (CoA) was shown to impact the product of the transformation. These results point to differences in the 7α-dehydroxylation pathway among microorganisms and the crucial role of CoA ligation in the process.


Assuntos
Ácido Quenodesoxicólico , Microbioma Gastrointestinal , Humanos , Ácido Quenodesoxicólico/metabolismo , Ácidos e Sais Biliares/metabolismo , Clostridiales/metabolismo , Clostridium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...