Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 20(1): 174, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488765

RESUMO

BACKGROUND: Bacillus subtilis is one of the most important microorganisms for recombinant protein production. It possesses the GRAS (generally recognized as safe) status and a potent protein secretion capacity. Secretory protein production greatly facilitates downstream processing and thus significantly reduces costs. However, not all heterologous proteins are secreted and intracellular production poses difficulties for quantification. To tackle this problem, we have established a so-called intracellular split GFP (iSplit GFP) assay in B. subtilis as a tool for the in vivo protein detection during expression in batch cultures and at a single-cell level. For the iSplit GFP assay, the eleventh ß-sheet of sfGFP is fused to a target protein and can complement a detector protein consisting of the respective truncated sfGFP (GFP1-10) to form fluorescent holo-GFP. RESULTS: As proof of concept, the GFP11-tag was fused C-terminally to the E. coli ß-glucuronidase GUS, resulting in fusion protein GUS11. Variable GUS and GUS11 production levels in B. subtilis were achieved by varying the ribosome binding site via spacers of increasing lengths (4-12 nucleotides) for the GUS-encoding gene. Differences in intracellular enzyme accumulation were determined by measuring the GUS11 enzymatic activity and subsequently by adding the detector protein to respective cell extracts. Moreover, the detector protein was co-produced with the GUS11 using a two-plasmid system, which enabled the in vivo detection and online monitoring of glucuronidase production. Using this system in combination with flow cytometry and microfluidics, we were able to monitor protein production at a single-cell level thus yielding information about intracellular protein distribution and culture heterogeneity. CONCLUSION: Our results demonstrate that the iSplit GFP assay is suitable for the detection, quantification and online monitoring of recombinant protein production in B. subtilis during cultivation as well as for analyzing production heterogeneity and intracellular localization at a single-cell level.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas Recombinantes/biossíntese , Escherichia coli/genética , Glucuronidase/biossíntese
2.
Microb Cell Fact ; 19(1): 154, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727460

RESUMO

BACKGROUND: Bacillus subtilis is widely used for the industrial production of recombinant proteins, mainly due to its high secretion capacity, but higher production yields can be achieved only if bottlenecks are removed. To this end, a crucial process is translation initiation which takes place at the ribosome binding site enclosing the Shine Dalgarno sequence, the start codon of the target gene and a short spacer sequence in between. Here, we have studied the effects of varying spacer sequence lengths in vivo on the production yield of different intra- and extracellular proteins. RESULTS: The shuttle vector pBSMul1 containing the strong constitutive promoter PHpaII and the optimal Shine Dalgarno sequence TAAGGAGG was used as a template to construct a series of vectors with spacer lengths varying from 4 to 12 adenosines. For the intracellular proteins GFPmut3 and ß-glucuronidase, an increase of spacer lengths from 4 to 7-9 nucleotides resulted in a gradual increase of product yields up to 27-fold reaching a plateau for even longer spacers. The production of secreted proteins was tested with cutinase Cut and swollenin EXLX1 which were N-terminally fused to one of the Sec-dependent signal peptides SPPel, SPEpr or SPBsn. Again, longer spacer sequences resulted in up to tenfold increased yields of extracellular proteins. Fusions with signal peptides SPPel or SPBsn revealed the highest production yields with spacers of 7-10nt length. Remarkably, fusions with SPEpr resulted in a twofold lower production yield with 6 or 7nt spacers reaching a maximum with 10-12nt spacers. This pattern was observed for both secreted proteins fused to SPEpr indicating a dominant role also of the nucleotide sequence encoding the respective signal peptide for translation initiation. This conclusion was corroborated by RT qPCR revealing only slightly different amounts of transcript. Also, the effect of a putative alternative translation initiation site could be ruled out. CONCLUSION: Our results confirm the importance of the 5' end sequence of a target gene for translation initiation. Optimizing production yields thus may require screenings for optimal spacer sequence lengths. In case of secreted proteins, the 5' sequence encoding the signal peptide for Sec-depended secretion should also be considered.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/biossíntese , DNA Espaçador Ribossômico/genética , Ribossomos/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Códon de Iniciação/genética , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Sinais Direcionadores de Proteínas , Proteínas Recombinantes/biossíntese , Ribossomos/metabolismo
3.
Anal Bioanal Chem ; 410(1): 57-69, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29184998

RESUMO

In contrast to biochemical reactions, which are often carried out under automatic control and maintained overnight, the automation of chemical analysis is usually neglected. Samples are either analyzed in a rudimentary fashion using in situ techniques, or aliquots are withdrawn and stored to facilitate more precise offline measurements, which can result in sampling and storage errors. Therefore, in this study, we implemented automated reaction control, sampling, and analysis. As an example, the activities of xylanases on xylotetraose and soluble xylan were examined using high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The reaction was performed in HPLC vials inside a temperature-controlled Dionex™ AS-AP autosampler. It was started automatically when the autosampler pipetted substrate and enzyme solution into the reaction vial. Afterwards, samples from the reaction vial were injected repeatedly for 60 min onto a CarboPac™ PA100 column for analysis. Due to the rapidity of the reaction, the analytical method and the gradient elution of 200 mM sodium hydroxide solution and 100 mM sodium hydroxide with 500 mM sodium acetate were adapted to allow for an overall separation time of 13 min and a detection limit of 0.35-1.83 mg/L (depending on the xylooligomer). This analytical method was applied to measure the soluble short-chain products (xylose, xylobiose, xylotriose, xylotetraose, xylopentaose, and longer xylooligomers) that arise during enzymatic hydrolysis. Based on that, the activities of three endoxylanases (EX) were determined as 294 U/mg for EX from Aspergillus niger, 1.69 U/mg for EX from Bacillus stearothermophilus, and 0.36 U/mg for EX from Bacillus subtilis. Graphical abstract Xylanase activity assay automation.


Assuntos
Aspergillus niger/enzimologia , Cromatografia por Troca Iônica/métodos , Endo-1,4-beta-Xilanases/metabolismo , Ensaios Enzimáticos/métodos , Geobacillus stearothermophilus/enzimologia , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/economia , Endo-1,4-beta-Xilanases/análise , Ensaios Enzimáticos/economia , Hidrólise , Limite de Detecção , Fatores de Tempo , Xilanos/metabolismo
4.
Microb Cell Fact ; 16(1): 160, 2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28946879

RESUMO

BACKGROUND: Bacillus subtilis produces and secretes proteins in amounts of up to 20 g/l under optimal conditions. However, protein production can be challenging if transcription and cotranslational secretion are negatively affected, or the target protein is degraded by extracellular proteases. This study aims at elucidating the influence of a target protein on its own production by a systematic mutational analysis of the homologous B. subtilis model protein lipase A (LipA). We have covered the full natural diversity of single amino acid substitutions at 155 positions of LipA by site saturation mutagenesis excluding only highly conserved residues and qualitatively and quantitatively screened about 30,000 clones for extracellular LipA production. Identified variants with beneficial effects on production were sequenced and analyzed regarding B. subtilis growth behavior, extracellular lipase activity and amount as well as changes in lipase transcript levels. RESULTS: In total, 26 LipA variants were identified showing an up to twofold increase in either amount or activity of extracellular lipase. These variants harbor single amino acid or codon substitutions that did not substantially affect B. subtilis growth. Subsequent exemplary combination of beneficial single amino acid substitutions revealed an additive effect solely at the level of extracellular lipase amount; however, lipase amount and activity could not be increased simultaneously. CONCLUSIONS: Single amino acid and codon substitutions can affect LipA secretion and production by B. subtilis. Several codon-related effects were observed that either enhance lipA transcription or promote a more efficient folding of LipA. Single amino acid substitutions could improve LipA production by increasing its secretion or stability in the culture supernatant. Our findings indicate that optimization of the expression system is not sufficient for efficient protein production in B. subtilis. The sequence of the target protein should also be considered as an optimization target for successful protein production. Our results further suggest that variants with improved properties might be identified much faster and easier if mutagenesis is prioritized towards elements that contribute to enzymatic activity or structural integrity.


Assuntos
Substituição de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Códon/genética , Lipase/genética , Lipase/metabolismo , Bacillus subtilis/metabolismo , Clonagem Molecular , Códon/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutagênese , Engenharia de Proteínas , Transporte Proteico
5.
J Biotechnol ; 258: 110-116, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28619616

RESUMO

The large-scale industrial production of proteins requires efficient secretion, as provided, for instance, by the Sec system of Gram-positive bacteria. Protein engineering approaches to optimize secretion often involve the screening of large libraries, e.g. comprising a target protein fused to many different signal peptides. Respective high-throughput screening methods are usually based on photometric or fluorimetric assays enabling fast and simple determination of enzymatic activities. Here, we report on an alternative method for quantification of secreted proteins based on the split GFP assay. We analyzed the secretion by Bacillus subtilis of a homologous lipase and a heterologous cutinase by determination of GFP fluorescence and enzyme activity assays. Furthermore, we identified from a signal peptide library a variant of the biotechnologically relevant B. subtilis protein swollenin EXLX1 with up to 5-fold increased secretion. Our results demonstrate that the split GFP assay can be used to monitor secretion of enzymatic and non-enzymatic proteins in B. subtilis in a high-throughput manner.


Assuntos
Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Fluorescência Verde/genética , Biblioteca de Peptídeos , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...