Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-494373

RESUMO

A deeper understanding of the molecular determinants that drive humoral responses to coronaviruses, and in particular severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is critical for improving and developing diagnostics, therapies and vaccines. Moreover, viral mutations can change key antigens in a manner that alters the ability of the immune system to detect and clear infections. In this study, we exploit a deep serological profiling strategy coupled with an integrated, computational framework for the analysis of SARS-CoV-2 humoral immune responses of asymptomatic or recovered COVID-19-positive patients relative to COVID-19-negative patients. We made use of a novel high-density peptide array (HDPA) spanning the entire proteomes of SARS-CoV-2 and endemic human coronaviruses to rapidly identify B cell epitopes recognized by distinct antibody isotypes in patients blood sera. Using our integrated computational pipeline, we then evaluated the fine immunological properties of detected SARS-CoV-2 epitopes and relate them to their evolutionary and structural properties. While some epitopes are common across all CoVs, others are private to specific hCoVs. We also highlight the existence of hotspots of pre-existing immunity and identify a subset of cross-reactive epitopes that contributes to increasing the overall humoral immune response to SARS-CoV-2. Using a public dataset of over 38,000 viral genomes from the early phase of the pandemic, capturing both inter- and within-host genetic viral diversity, we determined the evolutionary profile of epitopes and the differences across proteins, waves and SARS-CoV-2 variants, which have important implications for genomic surveillance and vaccine design. Lastly, we show that mutations in Spike and Nucleocapsid epitopes are under stronger selection between than within patients, suggesting that most of the selective pressure for immune evasion occurs upon transmission between hosts.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-135004

RESUMO

There is an urgent need for a vaccine with efficacy against SARS-CoV-2. We hypothesize that peptide vaccines containing epitope regions optimized for concurrent B cell, CD4+ T cell, and CD8+ T cell stimulation would drive both humoral and cellular immunity with high specificity, potentially avoiding undesired effects such as antibody-dependent enhancement (ADE). Additionally, such vaccines can be rapidly manufactured in a distributed manner. In this study, we combine computational prediction of T cell epitopes, recently published B cell epitope mapping studies, and epitope accessibility to select candidate peptide vaccines for SARS-CoV-2. We begin with an exploration of the space of possible T cell epitopes in SARS-CoV-2 with interrogation of predicted HLA-I and HLA-II ligands, overlap between predicted ligands, protein source, as well as concurrent human/murine coverage. Beyond MHC affinity, T cell vaccine candidates were further refined by predicted immunogenicity, viral source protein abundance, sequence conservation, coverage of high frequency HLA alleles and co-localization of CD4+ and CD8+ T cell epitopes. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering to select regions with surface accessibility, high sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. From 58 initial candidates, three B cell epitope regions were identified. By combining these B cell and T cell analyses, as well as a manufacturability heuristic, we propose a set of SARS-CoV-2 vaccine peptides for use in subsequent murine studies and clinical trials. O_FIG O_LINKSMALLFIG WIDTH=180 HEIGHT=200 SRC="FIGDIR/small/135004v1_ufig1.gif" ALT="Figure 1"> View larger version (40K): org.highwire.dtl.DTLVardef@1fc6599org.highwire.dtl.DTLVardef@1725a45org.highwire.dtl.DTLVardef@84a233org.highwire.dtl.DTLVardef@1b4c7aa_HPS_FORMAT_FIGEXP M_FIG C_FIG

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...