Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(8)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37632023

RESUMO

COVID-19-related thrombosis affects the venous and arterial systems. Data from 156 autopsies of COVID-19 patients were retrospectively analyzed to investigate the pattern of thrombotic complications and factors associated with pulmonary artery thrombosis and thromboembolism. Thrombotic complications were observed in a significant proportion (n = 68, 44%), with pulmonary artery thrombosis the most frequently identified thrombotic event (42, 27%). Multivariate analysis revealed that the length of hospital stay (OR 1.1, p = 0.004), neutrophil infiltration in the alveolar spaces (OR 3.6, p = 0.002), and the absence of hyaline membranes (OR 0.1, p = 0.01) were associated with thrombotic complications. Neutrophil infiltration in the alveolar spaces (OR 8, p < 0.001) and the absence of hyaline membranes (OR 0.1, p = 0.003) were also independent predictors of pulmonary artery thrombosis. The association of pulmonary artery thrombosis with an absence of hyaline membranes suggests it occurs later in the course of COVID-19 infection. As neutrophil infiltration in the alveolar spaces may indicate bacterial infection, our studies suggest the consideration of bacterial infections in these critically ill patients.


Assuntos
COVID-19 , Trombose , Humanos , Artéria Pulmonar , Estudos Retrospectivos , COVID-19/complicações , Trombose/etiologia , Veias
2.
Polymers (Basel) ; 15(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37571171

RESUMO

This paper presents the results of studies on the pervaporation properties (for benzene/hexane mixtures) and gas permeability (for He, H2, N2, O2, CO2, CH4, C2H6, and C4H10) of ladder-like polyphenylsesquioxanes (L-PPSQ) with improved physical and chemical properties. These polymers were obtained by condensation of cis-tetraphenylcyclotetrasiloxanetetraol in ammonia medium. The structure of L-PPSQ was fully confirmed by a combination of physicochemical analysis methods: 1H, 29Si NMR, IR spectroscopy, HPLC, powder XRD, and viscometry in solution. For the first time, a high molecular weight of the polymer (Mn = 238 kDa, Mw = 540 kDa) was achieved, which determines its improved mechanical properties and high potential for use in membrane separation. Using TGA and mechanical analysis methods, it was found that this polymer has high thermal (Td5% = 537 °C) and thermal-oxidative stability (Td5% = 587 °C) and good mechanical properties (Young's module (E) = 1700 MPa, ultimate tensile stress (σ) = 44 MPa, elongation at break (ε) = 6%), which is important for making membranes workable under various conditions. The polymer showed a high separation factor for a mixture of 10% wt. benzene in n-hexane (126) at a benzene flow of 33 g/(m2h).

3.
ACS Appl Mater Interfaces ; 15(31): 37274-37289, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499236

RESUMO

We report a one-pot plasma electrolytic oxidation (PEO) strategy for forming a multi-element oxide layer on the titanium surface using complex electrolytes containing Na2HPO4, Ca(OH)2, (NH2)2CO, Na2SiO3, CuSO4, and KOH compounds. For even better bone implant ingrowth, PEO coatings were additionally loaded with bone morphogenetic protein-2 (BMP-2). The samples were tested in vivo in a mouse craniotomy model. Tests for bactericidal and fungicidal activity were carried out using clinically isolated multi-drug-resistant Escherichia coli (E. coli) K261, E. coli U20, methicillin-resistant Staphylococcus aureus (S. aureus) CSA154 bacterial strains, and Neurospora crassa (N. crassa) and Candida albicans (C. albicans) D2528/20 fungi. The PEO-Cu coating effectively inactivated both Gram-positive and Gram-negative bacteria at low concentrations of Cu2+ ions: minimal bactericidal concentration for E. coli and N. crassa (99.9999%) and minimal inhibitory concentration (99.0%) for S. aureus were 5 ppm. For all studied bacterial and fungal strains, PEO-Cu coating completely prevented the formation of bacterial and fungal biofilms. PEO and PEO-Cu coatings demonstrated bone remodeling and moderate osteoconductivity in vivo, while BMP-2 significantly enhanced osteoconduction and osteogenesis. The obtained results are encouraging and indicate that Ti-based materials with PEO coatings loaded with BMP-2 can be widely used in customized medicine as implants for orthopedics and cranio-maxillofacial surgery.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteogênese , Animais , Camundongos , Titânio/farmacologia , Antibacterianos/farmacologia , Staphylococcus aureus , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Regeneração Óssea , Materiais Revestidos Biocompatíveis/farmacologia , Propriedades de Superfície
4.
Membranes (Basel) ; 13(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37233580

RESUMO

The first commercial hollow fiber and flat sheet gas separation membranes were produced in the late 1970s from the glassy polymers polysulfone and poly(vinyltrimethyl silane), respectively, and the first industrial application was hydrogen recovery from ammonia purge gas in the ammonia synthesis loop. Membranes based on glassy polymers (polysulfone, cellulose acetate, polyimides, substituted polycarbonate, and poly(phenylene oxide)) are currently used in various industrial processes, such as hydrogen purification, nitrogen production, and natural gas treatment. However, the glassy polymers are in a non-equilibrium state; therefore, these polymers undergo a process of physical aging, which is accompanied by the spontaneous reduction of free volume and gas permeability over time. The high free volume glassy polymers, such as poly(1-trimethylgermyl-1-propyne), polymers of intrinsic microporosity PIMs, and fluoropolymers Teflon® AF and Hyflon® AD, undergo significant physical aging. Herein, we outline the latest progress in the field of increasing durability and mitigating the physical aging of glassy polymer membrane materials and thin-film composite membranes for gas separation. Special attention is paid to such approaches as the addition of porous nanoparticles (via mixed matrix membranes), polymer crosslinking, and a combination of crosslinking and addition of nanoparticles.

5.
Biomedicines ; 11(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239078

RESUMO

Despite the enormous interest in COVID-19, there is no clear understanding of the mechanisms underlying the neurological symptoms in COVID-19. Microglia have been hypothesized to be a potential mediator of the neurological manifestations associated with COVID-19. In most existing studies to date, morphological changes in internal organs, including the brain, are considered in isolation from clinical data and defined as a consequence of COVID-19. We performed histological immunohistochemical (IHC) studies of brain autopsy materials of 18 patients who had died from COVID-19. We evaluated the relationship of microglial changes with the clinical and demographic characteristics of the patients. The results revealed neuronal alterations and circulatory disturbances. We found an inverse correlation between the integral density Iba-1 (microglia/macrophage-specific marker) IHC staining and the duration of the disease (R = -0.81, p = 0.001), which may indicate a reduced activity of microglia and do not exclude their damage in the long-term course of COVID-19. The integral density of Iba-1 IHC staining was not associated with other clinical and demographic factors. We observed a significantly higher number of microglial cells in close contact with neurons in female patients, which confirms gender differences in the course of the disease, indicating the need to study the disease from the standpoint of personalized medicine.

6.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175771

RESUMO

The weak point of ionic liquids is their high viscosity, limiting the maximum polymer concentration in the forming solutions. A low-viscous co-solvent can reduce viscosity, but cellulose has none. This study demonstrates that dimethyl sulfoxide (DMSO), being non-solvent for cellulose, can act as a nominal co-solvent to improve its processing into a nanofiltration membrane by phase inversion. A study of the rheology of cellulose solutions in diluted ionic liquids ([EMIM]Ac, [EMIM]Cl, and [BMIM]Ac) containing up to 75% DMSO showed the possibility of decreasing the viscosity by up to 50 times while keeping the same cellulose concentration. Surprisingly, typical cellulose non-solvents (water, methanol, ethanol, and isopropanol) behave similarly, reducing the viscosity at low doses but causing structuring of the cellulose solution and its phase separation at high concentrations. According to laser interferometry, the nature of these non-solvents affects the mass transfer direction relative to the forming membrane and the substance interdiffusion rate, which increases by four-fold when passing from isopropanol to methanol or water. Examination of the nanofiltration characteristics of the obtained membranes showed that the dilution of ionic liquid enhances the rejection without changing the permeability, while the transition to alcohols increases the permeability while maintaining the rejection.


Assuntos
Líquidos Iônicos , Solventes , Celulose , Dimetil Sulfóxido , 2-Propanol , Metanol , Água , Reologia , Viscosidade
7.
Polymers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36772023

RESUMO

Membrane development for specific separation tasks is a current and important topic. In this work, the influence of OH-groups introduced in polydecylmethylsiloxane (PDecMS) was shown on the separation of CO2 from air and aldehydes from hydroformylation reaction media. OH-groups were introduced to PDecMS during hydrosilylation reaction by adding 1-decene with undecenol-1 to polymethylhydrosiloxane, and further cross-linking. Flat sheet composite membranes were developed based on these polymers. For obtained membranes, transport and separation properties were studied for individual gases (CO2, N2, O2) and liquids (1-hexene, 1-heptene, 1-octene, 1-nonene, heptanal and decanal). Sorption measurements were carried out for an explanation of difference in transport properties. The general trend was a decrease in membrane permeability with the introduction of OH groups. The presence of OH groups in the siloxane led to a significant increase in the selectivity of permeability with respect to acidic components. For example, on comparing PDecMS and OH-PDecMS (~7% OH-groups to decyl), it was shown that selectivity heptanal/1-hexene increased eight times.

8.
ACS Appl Polym Mater ; 5(2): 1145-1158, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36817336

RESUMO

Branched forms of the archetypal polymer of intrinsic microporosity PIM-1 and the pyridinecarbonitrile-containing PIM-Py may be crosslinked under ambient conditions by palladium(II) acetate. Branched PIM-1 can arise in polymerizations of 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1'-spirobisindane with tetrafluoroterephthalonitrile conducted at a high set temperature (160 °C) under conditions, such as high dilution, that lead to a lower-temperature profile over the course of the reaction. Membranes of PIM-1 and PIM-Py crosslinked with palladium acetate are sufficiently stable in organic solvents for use in the recovery of toluene from its mixture with dimethyl sulfoxide (DMSO) by pervaporation at 65 °C. With both PIM-1 and PIM-Py membranes, pervaporation gives high toluene/DMSO separation factors (around 10 with a 77 vol % toluene feed). Detailed analysis shows that the membranes themselves are slightly selective for DMSO and it is the high driving force for toluene evaporation that drives the separation.

9.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615597

RESUMO

In this work, we studied aqueous solutions of monoethanolamine (MEA), which are widely used to remove CO2 from flue and oil gases. This study combined experimental and theoretical methods of vibrational spectroscopy, using high-temperature infrared spectroscopy, quantum-chemical calculations of theoretical vibrational spectra, and structural electronic and energy characteristics of model structures. MEA has a propensity to form associations between various compositions and structures with water molecules, as well as those composed solely of water molecules. The structural and energy characteristics of such associates were analyzed in terms of their ability to interact and retain carbon dioxide. The influence of elevated temperatures and concentration of aqueous MEA solution on change in the structure of associates has also been investigated. An analysis of theoretical and experimental vibrational spectra allowed us to examine the IR spectra of MEA solutions, and identify the bands responsible for the formation of associates that would sorb CO2 well, but would delay its desorption from the solution.

10.
J Ren Nutr ; 33(3): 435-442, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36379387

RESUMO

It has been established that the use of a low-protein diet (LPD) in combination with ketoanalogues of essential amino acids (KA) can contribute to cardio and nephroprotection in chronic kidney disease (CKD). Moreover, it has been shown that partial replacement of the animal protein with soy protein (SP) in the diet contributed to more pronounced nephro and cardioprotection in CKD, however, the data, available in the literature, are mainly represented by experimental studies. AIM OF THE STUDY: We conducted a prospective randomized controlled clinical study that compared the effects of 2 types of diets on the main parameters of nephro and cardioprotection in patients with CKD. MATERIALS AND METHODS: The study included 85 CKD 3b-4 stages G3b-4 patients, compliant to LPD (0.6 g of protein/kg of body weight) + KA (1 tablet/5 kg of body weight). 43 patients (Group 1) received LPD with substitution of animal protein with soy (60% SP + 40% of other vegetable proteins) + KA, and 42 patients (control group (Group 2) received conventional LPD (60% animal protein +40% of vegetable protein) + KA, within 12 months. RESULTS: Substitution of animal protein with SP in diet of patients with CKD to a greater extent delayed the decrease in eGFR (-5.9% vs -11.3%, P = .048), the increase in left ventricle hypertrophy (+4.7% vs +12.3%, P = .042), as well as the increase in central systolic blood pressure (+2.6% vs +13.0%, P = .021), augmentation index (+7.6% vs +23.3%, P = .010), slowed down the decrease in lean body mass in males (+0.9% vs -11.2%, P = .017) and females (-1.8% vs -10.3%, P = .024), increase in phosphorus (-10.3% vs +13.0%, P = .029), cholesterol (-10.7% vs -3.4% P = .047) and urea (+6.3% vs +19.6%, P = .035) serum levels. CONCLUSION: The use of LPD with substitution of animal protein with SP + KA provides more pronounced effect on nephro and cardioprotection as well as maintenance of nutritional status, than conventional LPD + KA in patients with CKD 3b-4 stages.


Assuntos
Insuficiência Renal Crônica , Proteínas de Soja , Masculino , Feminino , Animais , Humanos , Dieta com Restrição de Proteínas , Aminoácidos Essenciais , Peso Corporal
11.
Membranes (Basel) ; 12(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36557142

RESUMO

Poly-(4,4'-oxydiphenylene) pyromellitimide or Kapton is the most widely available polyimide with high chemical and thermal stability. It has great prospects for use as a membrane material for filtering organic media due to its complete insolubility. However, the formation of membranes based on it, at the moment, is an unsolved problem. The study corresponds to the rediscovery of poly(4,4'-oxydiphenylene-pyromellitimide)-based soluble copoly(urethane-imides) as membrane polymers of a new generation. It is shown that the physical structure of PUI films prepared by the solution method becomes porous after the removal of urethane blocks from the polymer, and the pore size varies depending on the conditions of thermolysis and subsequent hydrolysis of the membrane polymer. The film annealed at 170 °C with a low destruction degree of polycaprolactam blocks exhibits the properties of a nanofiltration membrane. It is stable in the aprotic solvent DMF and has a Remasol Brilliant Blue R retention coefficient of 95%. After the hydrolysis of thermally treated films in acidic media, ultrafiltration size 66-82 nm pores appear, which leads to an increase in the permeate flow by more than two orders of magnitude. This circumstance provides opportunities for controlling the membrane polymer structure for further optimization of the performance characteristics of filtration membranes based on it. Thus, we proposed a new preparation method of ultra- and nanofiltration membranes based on poly(4,4'-oxydiphenylene-pyromellitimide) that are stable in aprotic solvents.

12.
Polymers (Basel) ; 14(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36236078

RESUMO

Polymeric coatings and membranes with extended stability toward a wide range of organic solvents are practical for application in harsh environments; on the other hand, such stability makes their processing quite difficult. In this work, we propose a novel method for the fabrication of films based on non-soluble polymers. The film is made from the solution of block copolymer containing both soluble and insoluble blocks followed by selective decomposition of soluble blocks. To prove this concept, we synthesized copolymer [(imide)n-(polyurethane)]m, in which the imide blocks were combined with polyurethane blocks based on polycaprolactone. By selective hydrolysis of urethane blocks in the presence of acid, it was possible to obtain the insoluble polyimide film for the first time. It was shown that the combination of thermal and acid treatment allowed almost complete removal of urethane blocks from the initial copolymer chains. IR spectroscopy, TGA, DSC and DMA methods were used to study the evaluation of the structure and properties of polymeric material as a result of thermal oxidation and hydrolysis by acid. It was shown that the polymeric films obtained by controlled decomposition were not soluble in aprotic solvent, such as dimethylformamide, n-methylpyrrolidone and dimethyl sulfoxide, and showed very close similarity to the homopolymer consisting of the same imide monomer, poly-(4,4'oxydiphenylene)pyromellitimide, confirming the feasibility of the proposed concept and its perspectives for fabrication of organic solvent-resistant membranes.

13.
Polymers (Basel) ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808741

RESUMO

Polymers from norbornenes are of interest for applications in opto- and microelectronic (low dielectric materials, photoresists, OLEDs). Norbornenes with ester motifs are among the most readily available norbornene derivatives. However, little is known about dielectric properties and the gas-transport of polynorbornenes from such monomers. Herein, we synthesized a new metathesis polymer from exo-5-norbornenecarboxylic acid and 1,1'-bi-2-naphthol. The designed monomer was obtained via a two-step procedure in a good yield. This norbornene derivative with a rigid and a bulky binaphthyl group was successfully polymerized over the 1st generation Grubbs catalyst, affording high-molecular-weight products (Mw ≤ 1.5·106) in yields of 94-98%. The polymer is amorphous and glassy (Tg = 161 °C), and it shows good thermal stability. Unlike most, polyNBi is a classic low-permeable glassy polymer. The selectivity of polyNBi was higher than that of polyNB. Being less permeable than polyNB, polyNBi unexpectedly showed a lower value of dielectric permittivity (2.7 for polyNBi vs. 5.0 for polyNB). Therefore, the molecular design of polynorbornenes has great potential to obtain polymers with desired properties in a wide range of required characteristics. Further tuning of the gas separation efficiency can be achieved by attaching an appropriate substituent to the ester and aryl group.

14.
Polymers (Basel) ; 14(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35267801

RESUMO

This review is devoted to the application of bulk synthetic polymers such as polysulfone (PSf), polyethersulfone (PES), polyacrylonitrile (PAN), and polyvinylidene fluoride (PVDF) for the separation of oil-water emulsions. Due to the high hydrophobicity of the presented polymers and their tendency to be contaminated with water-oil emulsions, methods for the hydrophilization of membranes based on them were analyzed: the mixing of polymers, the introduction of inorganic additives, and surface modification. In addition, membranes based on natural hydrophilic materials (cellulose and its derivatives) are given as a comparison.

15.
Viruses ; 14(2)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215805

RESUMO

The increased plasma levels of von Willebrand factor (VWF) in patients with COVID-19 was reported in many studies, and its correlation with disease severity and mortality suggest its important role in the pathogenesis of thrombosis in COVID-19. We performed histological and immunohistochemical studies of the lungs of 29 patients who died from COVID-19. We found a significant increase in the intensity of immunohistochemical reaction for VWF in the pulmonary vascular endothelium when the disease duration was more than 10 days. In the patients who had thrombotic complications, the VWF immunostaining in the pulmonary vascular endothelium was significantly more intense than in nonsurvivors without thrombotic complications. Duration of disease and thrombotic complications were found to be independent predictors of increased VWF immunostaining in the endothelium of pulmonary vessels. We also revealed that bacterial pneumonia was associated with increased VWF staining intensity in pulmonary arterial, arteriolar, and venular endothelium, while lung ventilation was an independent predictor of increased VWF immunostaining in arterial endothelium. The results of the study demonstrated an important role of endothelial VWF in the pathogenesis of thrombus formation in COVID-19.


Assuntos
COVID-19/complicações , Pulmão/irrigação sanguínea , Trombose Venosa/etiologia , Trombose Venosa/patologia , Fator de von Willebrand/análise , Adulto , Autopsia , COVID-19/sangue , Endotélio Vascular/imunologia , Feminino , Humanos , Imuno-Histoquímica/métodos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Pneumonia Bacteriana/imunologia , Embolia Pulmonar , Índice de Gravidade de Doença , Trombose Venosa/classificação
16.
Int Urol Nephrol ; 54(7): 1613-1621, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34718928

RESUMO

BACKGROUND: In chronic kidney disease (CKD) cardiovascular remodeling (CVR) is very frequent compared with general population and, as suppose, may be associated with «new¼ renal risk factors. The aim of study was to estimate association of new serum biomarkers (FGF-23, Klotho) and traditional biomarker of cardiac damage-serum Troponin I (sTr-I) with signs of CVR. METHODS: One hundred thirty CKD G1-5D patients without cardiovascular disease (CVD) clinical manifestation were included. We measured serum FGF-23, Klotho and sTr-I. The instrumental methods were: echocardiography, SphygmoCor test [Pulse Wave Velocity (PWV), Central (aortic) Blood Pressure (CBP), Subendocardial Blood Supply (SBS)]. RESULTS: FGF-23 level correlated with: sTr-I (r = 0.512; p < 0.01), eccentric left ventricular hypertrophy, LVH (r = 0.543; p < 0.01), SBS (r = - 0.499; p < 0.05). There were no differences of FGF-23 level in patients with normal and high CBP. Klotho correlated with concentric LVH (r = - 0.451; p < 0.01), PWV (r = - 0.667; p < 0.001), Cardiac Calcification Score, CCS (r = - 0.581; p < 0.01). Multivariate analysis revealed positive independent association of FGF-23 with eccentric LVH (OR = 1.036, 95% CI (1.004-1.068); p = 0.038). Klotho was a negative determinant for concentric LVH (OR = 0.990, 95% CI 0.987-0.994; p < 0.001), increased PWV (OR = 0.984, 95% CI (0.977-0.991); p < 0.001) and CCS (OR = 0.991, 95% CI (0.988-0.995); p < 0.001). In addition, multivariate analysis revealed a relationship between serum Klotho (OR = 0.980, 95% CI (0.964-0.996); p = 0.016), FGF-23 (OR = 3.145, 95% CI (1.020-9.695); p = 0.046) and troponin I level. CONCLUSION: In CKD patients without CVD clinical manifestation increased serum FGF-23 level and decreased Klotho are associated with CVR: FGF-23 with eccentric LVH (independently of CBP), Klotho determinate concentric LVH, PWV and CCS. Moderately elevated sTr-I levels may be a manifestation of FGF-23/Klotho imbalance in CKD.


Assuntos
Doenças Cardiovasculares , Fator de Crescimento de Fibroblastos 23 , Falência Renal Crônica , Proteínas Klotho , Insuficiência Renal Crônica , Biomarcadores , Doenças Cardiovasculares/etiologia , Fator de Crescimento de Fibroblastos 23/genética , Glucuronidase , Humanos , Hipertrofia Ventricular Esquerda/etiologia , Falência Renal Crônica/complicações , Proteínas Klotho/genética , Insuficiência Renal Crônica/complicações , Troponina I
17.
Membranes (Basel) ; 13(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36676828

RESUMO

This work was focused on the mitigation of physical aging in thin-film composite (TFC) membranes (selective layer ~1 µm) based on polymer intrinsic microporosity (PTMSP) by the introduction of both soft, branched polyethyleneimine (PEI), and rigid, porous aromatic framework PAF-11, polymer additives. Self-standing mixed-matrix membranes of thicknesses in the range of 20-30 µm were also prepared with the same polymer and fillers. Based on 450 days of monitoring, it was observed that the neat PTMSP composite membrane underwent a severe decline of its gas transport properties, and the resultant CO2 permeance was 14% (5.2 m3 (STP)/(m2·h·bar)) from the initial value measured for the freshly cast sample (75 m3 (STP)/(m2·h·bar)). The introduction of branched polyethyleneimine followed by its cross-linking allowed to us to improve the TFC performance maintaining CO2 permeance at the level of 30% comparing with day zero. However, the best results were achieved by the combination of porous, rigid and soft, branched polymeric additives that enabled us to preserve the transport characteristics of TFC membrane as 43% (47 m3 (STP)/(m2·h·bar) after 450 days) from its initial values (110 m3 (STP)/(m2·h·bar)). Experimental data were fitted using the Kohlrausch-Williams-Watts function, and the limiting (equilibrium) values of the CO2 and N2 permeances of the TFC membranes were estimated. The limit value of CO2 permeance for neat PTMSP TFC membrane was found to be 5.2 m3 (STP)/(m2·h·bar), while the value of 34 m3(STP)/(m2·h·bar) or 12,600 GPU was achieved for TFC membrane containing 4 wt% cross-linked PEI, and 30 wt% PAF-11. Based on the N2 adsorption isotherms data, it was calculated that the reduction of the free volume was 1.5-3 times higher in neat PTMSP compared to the modified one. Bearing in mind the pronounced mitigation of physical aging by the introduction of both types of fillers, the developed high-performance membranes have great potential as support for the coating of an ultrathin, selective layer for gas separation.

18.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271925

RESUMO

In 2020 the world faced the pandemic of COVID-19 severe acute respiratory syndrome caused by a new type of coronavirus named SARS-CoV-2. To stop the spread of the disease, it is crucial to create molecular tools allowing the investigation, diagnoses and treatment of COVID-19. One of such tools are monoclonal antibodies (mAbs). In this study we describe the development of hybridoma cells that can produce mouse mAbs against receptor binding domain of SARS-CoV-2 spike (S) protein. These mAbs are able to specifically detect native and denatured S proteins in all tested applications, including immunoblotting, enzyme-linked immunosorbent assay, immunofluorescence staining of cells and immunohistochemical staining of paraffin embedded patients' tissue samples. In addition, we showed that the obtained mAbs can efficiently block SARS-CoV-2 infection in in vitro experiments. Finally, we determined the amino acid sequence of light and heavy chains of the mAbs. This information will allow the use of corresponding peptides to establish genetically engineered therapeutic antibodies. To date multiple mAbs against SARS-CoV-2 proteins have been established, however, bigger sets of various antibodies will allow the detection and neutralization of SARS-CoV-2, even if the virus acquires novel mutations.


Assuntos
Anticorpos Monoclonais/metabolismo , Antígenos Virais/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Reações Antígeno-Anticorpo , Antígenos Virais/imunologia , COVID-19/patologia , COVID-19/virologia , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Hibridomas/citologia , Hibridomas/metabolismo , Imuno-Histoquímica , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Domínios Proteicos/imunologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
19.
Mater Sci Eng C Mater Biol Appl ; 114: 110991, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32994018

RESUMO

A critical-sized calvarial defect in rats is employed to reveal the osteoinductive properties of biomaterials. In this study, we investigate the osteogenic efficiency of hybrid scaffolds based on composites of a biodegradable and biocompatible polymer, poly(3-hydroxybutyrate) (PHB) with hydroxyapatite (HA) filled with alginate (ALG) hydrogel containing mesenchymal stem cells (MSCs) on the regeneration of the critical-sized radial defect of the parietal bone in rats. The scaffolds based on PHB and PHB/HA with desired shapes were prepared by two-stage salt leaching technique using a mold obtained by three-dimensional printing. To obtain PHB/HA/ALG/MSC scaffolds seeded with MSCs, the scaffolds were filled with ALG hydrogel containing MSCs; acellular PHB/ALG and PHB/ALG filled with empty ALG hydrogel were prepared for comparison. The produced scaffolds have high porosity and irregular interconnected pore structure. PHB/HA scaffolds supported MSC growth and induced cell osteogenic differentiation in a regular medium in vitro that was manifested by an increase in ALP activity and expression of the CD45 phenotype marker. The data of computed tomography and histological studies showed 94% and 92%, respectively, regeneration of critical-sized calvarial bone defect in vivo at 28th day after implantation of MSC-seeded PHB/HA/ALG/MSC scaffolds with 3.6 times higher formation of the main amount of bone tissue at 22-28 days in comparison with acellular PHB/HA/ALG scaffolds that was shown at the first time by fluorescent microscopy using the original technique of intraperitoneal administration of fluorescent dyes to living postoperative rats. The obtained in vivo results can be associated with the MSC-friendly microstructure and in vitro osteogenic properties of PHB/HA base-scaffolds. Thus, the obtained data demonstrate the potential of MSCs encapsulated in the bioactive biopolymer/mineral/hydrogel scaffold to improve the bone regeneration process in critical-sized bone defects.


Assuntos
Células-Tronco Mesenquimais , Ácido 3-Hidroxibutírico , Alginatos , Animais , Regeneração Óssea , Diferenciação Celular , Durapatita , Hidroxibutiratos , Osteogênese , Poliésteres , Proibitinas , Ratos , Engenharia Tecidual , Alicerces Teciduais
20.
Polymers (Basel) ; 12(6)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503334

RESUMO

Polynorbornenes represent a fruitful class of polymers for structure-property study. Recently, vinyl-addition polynorbornenes bearing side groups of different natures were observed to exhibit excellent gas permeation ability, along with attractive C4H10/CH4 and CO2/N2 separation selectivities. However, to date, the gas transport properties of fluorinated addition polynorbornenes have not been reported. Herein, we synthesized addition polynorbornene with fluoroorganic substituents and executed a study on the gas transport properties of the polymer for the first time. A norbornene-type monomer with a C6F5 group, 3-pentafluorophenyl-exo-tricyclononene-7, was successfully involved in addition polymerization, resulting in soluble, high-molecular-weight products obtained in good or high yields. By varying the monomer concentration and monomer/catalyst ratio, it was possible to reach Mw values of (2.93-4.35) × 105. The molecular structure was confirmed by NMR and FTIR analysis. The contact angle with distilled water revealed the hydrophobic nature of the synthesized polymer as expected due to the presence of fluoroorganic side groups. A study of the permeability of various gases (He, H2, O2, N2, CO2, and CH4) through the prepared polymer disclosed a synergetic effect, which was achieved by the presence of both bulky perfluorinated side groups and rigid saturated main chains. Addition poly(3-pentafluorophenyl-exo-tricyclononene-7) was more permeable than its metathesis analogue by a factor of 7-21, or the similar polymer with flexible main chains, poly(pentafluorostyrene), in relation to the gases tested. Therefore, this investigation opens the door to fluorinated addition polynorbornenes as new potential polymeric materials for membrane gas separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...