Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(1): 30-34, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36541853

RESUMO

Using glass crystallization and solid-state techniques, we were able to complete the family of salt-inclusion silver halide borates, Ag4B7O12X, by the X = Cl and I members. The new compounds are characterized by differential scanning calorimetry, single-crystal and high-temperature powder X-ray diffraction, optical spectroscopy, and density functional theory calculations. In all structures, the silver atoms exhibit strong anharmonicity of thermal vibrations, which could be modeled using Gram-Charlier expansion, and its asymmetry was characterized by the skewness vector. The topology of the silver halide and borate sublattices has been analyzed separately for the first time. Along the I → Br → Cl series, we observe a decrease of the melting point and configuration entropy and an increase of thermal expansion and its anisotropy and thermal vibration anharmonicity, which indicates decreasing stability.

2.
Eur Biophys J ; 50(5): 759-770, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33834265

RESUMO

The interaction of hydrogen peroxide molecules with the DNA double helix is of great interest for understanding the mechanisms of anticancer therapy utilising heavy ion beams. In the present work, a molecular dynamics study of competitive binding of hydrogen peroxide and water molecules with phosphate groups of the DNA double helix backbone was carried out. The system of DNA double helix in a water solution with hydrogen peroxide molecules and Na[Formula: see text] counterions was simulated. The results show that the hydrogen peroxide molecules bind to oxygen atoms of the phosphate groups of the double helix backbone replacing water molecules of its hydration shell. The complexes of hydrogen peroxide molecules with the phosphate groups are stabilized by one or two hydrogen bonds and by Na[Formula: see text] counterions, forming ion-mediated contacts between phosphate groups and hydrogen peroxide molecules. The complex characterized by one H-bond between the hydrogen peroxide molecule and phosphate group is dominant, the other complexes are rare. The hydrogen peroxide molecule bound to the phosphate group of the double helix backbone can inhibit the formation of hydrogen bonds indispensable for the DNA biological functioning.


Assuntos
Simulação de Dinâmica Molecular , Ligação Competitiva , DNA , Ligação de Hidrogênio , Peróxido de Hidrogênio , Fosfatos , Sódio , Água
3.
Inorg Chem ; 59(5): 2655-2658, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32049501

RESUMO

An acentric borate family, Ag4B4O7X2 (X = Br, I), has been prepared by slow cooling stoichiometric melts in evacuated silica ampules. Their crystal structure is comprised of two porous interpenetrating frameworks and demonstrates a further development of the "salt-inclusion" architecture toward a "covalent-inclusion" structure. The (Ag2X)+ sublattice shows strong anharmonic vibrations. Thermal expansion is strongly anisotropic because of the presence of condensed rigid kernite boron-oxygen chains aligned perpendicular to the c axes.

4.
Eur Biophys J ; 48(3): 303, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30843088

RESUMO

The original article was published with the following errors.

5.
Eur Biophys J ; 47(8): 917-924, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29855676

RESUMO

Single-molecule experiments on DNA unzipping are analyzed on the basis of the mobility of nucleic bases in complementary pairs. Two possible scenarios of DNA double-helix unzipping are proposed and studied, using the atom-atom potential function method. According to the first scenario, the base pairs transit into a 'preopened' metastable state and then fully open along the 'stretch' pathway. In this case, the DNA unzipping takes place slowly and as an equilibrium process, with the opening energies being similar to the energies obtained in thermodynamic experiments on DNA melting. The second scenario is characterized by higher opening forces. In this case, the DNA base pairs open directly along the 'stretch' pathway. It follows from our calculations that, in this scenario, the enthalpy difference between the A[Formula: see text]T and G[Formula: see text]C base pairs is much higher than in the first case. The features of the first unzipping scenario show that it can play a key role during the process of DNA genetic information transfer in vivo. It follows from our study that a peculiarity of the second scenario is that it can be used for the development of faster methods for reading genetic information in vitro.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Modelos Moleculares , Pinças Ópticas , Termodinâmica
6.
Biopolymers ; 99(8): 508-16, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23712487

RESUMO

The formation of textures in DNA films with LiCl, NaCl, KCl, RbCl, and CsCl salts has been studied. The films are prepared by evaporation of water solution with highly polymerized calf thymus DNA and excess salt of specific type. For DNA solution with 10 mM concentration of NaCl, KCl, and RbCl the films with dendritic textures have been obtained, whereas in case of CsCl the textures in the films appear only at 30 mM concentration of excess salt in the initial solution. In the solution with LiCl, the textures in DNA films have not been observed within the whole range of concentration of excess salt under consideration. The analysis of parameters of DNA films with different salts has showed that evaporation of solution leads to crystallization of salt ions on DNA macromolecule and formation of DNA-salt complexes. Electrostatic energy of the system of crystalline ordered ions and charges of DNA chains has been estimated to study the stability of DNA-salt complexes. The results obtained for different salts have been showed that the presence of DNA macromolecule enhances crystallization as compared with solution without DNA. The property of excess salt to form the crystalline structures has been found to decrease in the following order: KCl > NaCl > RbCl > CsCl > LiCl. The results of estimation are in good agreement with the experimentally observed dependence of texture formation on excess salt type.


Assuntos
Cloretos , Metais Alcalinos , Animais , DNA , Sais/química , Cloreto de Sódio/química , Soluções/química
7.
J Phys Condens Matter ; 24(3): 035104, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22173097

RESUMO

All-atom molecular dynamics (MD) simulations of DNA duplex unzipping in a water environment were performed. The investigated DNA double helix consists of a Drew-Dickerson dodecamer sequence and a hairpin (AAG) attached to the end of the double-helix chain. The considered system is used to examine the process of DNA strand separation under the action of an external force. This process occurs in vivo and now is being intensively investigated in experiments with single molecules. The DNA dodecamer duplex is consequently unzipped pair by pair by means of the steered MD. The unzipping trajectories turn out to be similar for the duplex parts with G·C content and rather distinct for the parts with A·T content. It is shown that during the unzipping each pair experiences two types of motion: relatively quick rotation together with all the duplex and slower motion in the frame of the unzipping fork. In the course of opening, the complementary pair passes through several distinct states: (i) the closed state in the double helix, (ii) the metastable preopened state in the unzipping fork and (iii) the unbound state. The performed simulations show that water molecules participate in the stabilization of the metastable states of the preopened base pairs in the DNA unzipping fork.


Assuntos
Pareamento de Bases , DNA/química , Simulação de Dinâmica Molecular , Sequência de Bases , DNA/genética , Sequências Repetidas Invertidas , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...