Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(4): e0199023, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470054

RESUMO

The species- and clone-specific susceptibility of Staphylococcus cells for bacteriophages is governed by the structures and glycosylation patterns of wall teichoic acid (WTA) glycopolymers. The glycosylation-dependent phage-WTA interactions in the opportunistic pathogen Staphylococcus epidermidis and in other coagulase-negative staphylococci (CoNS) have remained unknown. We report a new S. epidermidis WTA glycosyltransferase TagE whose deletion confers resistance to siphoviruses such as ΦE72 but enables binding of otherwise unbound podoviruses. S. epidermidis glycerolphosphate WTA was found to be modified with glucose in a tagE-dependent manner. TagE is encoded together with the enzymes PgcA and GtaB providing uridine diphosphate-activated glucose. ΦE72 transduced several other CoNS species encoding TagE homologs, suggesting that WTA glycosylation via TagE is a frequent trait among CoNS that permits interspecies horizontal gene transfer. Our study unravels a crucial mechanism of phage-Staphylococcus interaction and horizontal gene transfer, and it will help in the design of anti-staphylococcal phage therapies.IMPORTANCEPhages are highly specific for certain bacterial hosts, and some can transduce DNA even across species boundaries. How phages recognize cognate host cells remains incompletely understood. Phages infecting members of the genus Staphylococcus bind to wall teichoic acid (WTA) glycopolymers with highly variable structures and glycosylation patterns. How WTA is glycosylated in the opportunistic pathogen Staphylococcus epidermidis and in other coagulase-negative staphylococci (CoNS) species has remained unknown. We describe that S. epidermidis glycosylates its WTA backbone with glucose, and we identify a cluster of three genes responsible for glucose activation and transfer to WTA. Their inactivation strongly alters phage susceptibility patterns, yielding resistance to siphoviruses but susceptibility to podoviruses. Many different CoNS species with related glycosylation genes can exchange DNA via siphovirus ΦE72, suggesting that glucose-modified WTA is crucial for interspecies horizontal gene transfer. Our finding will help to develop antibacterial phage therapies and unravel routes of genetic exchange.


Assuntos
Infecções Estafilocócicas , Staphylococcus epidermidis , Humanos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo , Staphylococcus aureus/genética , Coagulase/metabolismo , Glucose/metabolismo , Ácidos Teicoicos/metabolismo , Staphylococcus/metabolismo , Fagos de Staphylococcus/genética , DNA/metabolismo , Parede Celular/metabolismo , Infecções Estafilocócicas/metabolismo
2.
J Invest Dermatol ; 144(2): 369-377.e4, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37580012

RESUMO

In patients infected with severe acute respiratory syndrome coronavirus 2, vasculopathic changes of the skin are associated with a severe prognosis. However, the pathogenesis of this vasculopathy is not conclusively clarified. In this study, 25 prospectively collected skin samples from patients with COVID-19-related skin lesions were examined for vasculopathic changes and, in case of vasculitis, were further analyzed with electron microscopy and immunohistochemistry. Vasculopathy was observed in 76% of all COVID-19-related inflammatory skin lesions. Visual endothelial changes without manifest leukocytoclastic vasculitis were found in 60% of the COVID-19-related skin lesions, whereas leukocytoclastic vasculitis was diagnosed in 16%. In the cases of vasculitis, there were extensive spike protein depositions in microvascular endothelial cells that colocalized with the autophagosome proteins LC3B and LC3C. The autophagy protein complex LC3-associated endocytosis in microvascular endothelial cells seems to be an important pathogenic factor for severe acute respiratory syndrome coronavirus 2-related vasculitis in the skin. On ultrastructural morphology, the vasculitic process was dominated by intracellular vesicle formation and endothelial cell disruption. Direct presence of severe acute respiratory syndrome coronavirus 2 particles in the skin was not observed. Therefore, our results suggest that instead of direct viral infection, dermal vasculitic lesions in COVID-19 are caused by severe acute respiratory syndrome coronavirus 2 spike protein deposition followed by endothelial damage with activation of autophagy.


Assuntos
COVID-19 , Vasculite Leucocitoclástica Cutânea , Vasculite , Humanos , SARS-CoV-2 , COVID-19/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Endoteliais/metabolismo , Autofagossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...