Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 13(6): 546-558, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38457239

RESUMO

Human neural progenitor cells (hNPCs) hold promise for treating spinal cord injury. Studies to date have focused on improving their regenerative potential and therapeutic effect. Equally important is ensuring successful delivery and engraftment of hNPCs at the injury site. Unfortunately, no current imaging solution for cell tracking is compatible with long-term monitoring in vivo. The objective of this study was to apply a novel bright-ferritin magnetic resonance imaging (MRI) mechanism to track hNPC transplants longitudinally and on demand in the rat spinal cord. We genetically modified hNPCs to stably overexpress human ferritin. Ferritin-overexpressing (FT) hNPCs labeled with 0.2 mM manganese provided significant T1-induced bright contrast on in vitro MRI, with no adverse effect on cell viability, morphology, proliferation, and differentiation. In vivo, 2 M cells were injected into the cervical spinal cord of Rowett nude rats. MRI employed T1-weighted acquisitions and T1 mapping on a 3 T scanner. Conventional short-term cell tracking was performed using exogenous Mn labeling prior to cell transplantation, which displayed transient bright contrast on MRI 1 day after cell transplantation and disappeared after 1 week. In contrast, long-term cell tracking using bright-ferritin allowed on-demand signal recall upon Mn supplementation and precise visualization of the surviving hNPC graft. In fact, this new cell tracking technology identified 7 weeks post-transplantation as the timepoint by which substantial hNPC integration occurred. Spatial distribution of hNPCs on MRI matched that on histology. In summary, bright-ferritin provides the first demonstration of long-term, on-demand, high-resolution, and specific tracking of hNPCs in the rat spinal cord.


Assuntos
Rastreamento de Células , Ferritinas , Imageamento por Ressonância Magnética , Células-Tronco Neurais , Ratos Nus , Medula Espinal , Animais , Imageamento por Ressonância Magnética/métodos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Células-Tronco Neurais/metabolismo , Rastreamento de Células/métodos , Humanos , Ratos , Ferritinas/metabolismo , Medula Espinal/metabolismo , Medula Espinal/diagnóstico por imagem , Transplante de Células-Tronco/métodos , Diferenciação Celular , Traumatismos da Medula Espinal/terapia
2.
Stem Cell Res Ther ; 14(1): 330, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964388

RESUMO

BACKGROUND: A non-invasive imaging technology that can monitor cell viability, retention, distribution, and interaction with host tissue after transplantation is needed for optimizing and translating stem cell-based therapies. Current cell imaging approaches are limited in sensitivity or specificity, or both, for in vivo cell tracking. The objective of this study was to apply a novel ferritin-based magnetic resonance imaging (MRI) platform to longitudinal tracking of human embryonic stem cells (hESCs) in vivo. METHODS: Human embryonic stem cells (hESCs) were genetically modified to stably overexpress ferritin using the CRISPR-Cas9 system. Cellular toxicity associated with ferritin overexpression and manganese (Mn) supplementation were assessed based on cell viability, proliferation, and metabolic activity. Ferritin-overexpressing hESCs were characterized based on stem cell pluripotency and cardiac-lineage differentiation capability. Cells were supplemented with Mn and imaged in vitro as cell pellets on a preclinical 3 T MR scanner. T1-weighted images and T1 relaxation times were analyzed to assess contrast. For in vivo study, three million cells were injected into the leg muscle of non-obese diabetic severe combined immunodeficiency (NOD SCID) mice. Mn was administrated subcutaneously. T1-weighted sequences and T1 mapping were used to image the animals for longitudinal in vivo cell tracking. Cell survival, proliferation, and teratoma formation were non-invasively monitored by MRI. Histological analysis was used to validate MRI results. RESULTS: Ferritin-overexpressing hESCs labeled with 0.1 mM MnCl2 provided significant T1-induced bright contrast on in vitro MRI, with no adverse effect on cell viability, proliferation, pluripotency, and differentiation into cardiomyocytes. Transplanted hESCs displayed significant bright contrast on MRI 24 h after Mn administration, with contrast persisting for 5 days. Bright contrast was recalled at 4-6 weeks with early teratoma outgrowth. CONCLUSIONS: The bright-ferritin platform provides the first demonstration of longitudinal cell tracking with signal recall, opening a window on the massive cell death that hESCs undergo in the weeks following transplantation before the surviving cell fraction proliferates to form teratomas.


Assuntos
Células-Tronco Embrionárias Humanas , Teratoma , Camundongos , Animais , Humanos , Células-Tronco Embrionárias Humanas/patologia , Ferritinas/genética , Camundongos SCID , Imageamento por Ressonância Magnética/métodos , Células-Tronco Embrionárias
3.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298480

RESUMO

Magnetic resonance imaging (MRI) contrast agents, in contrast to the plethora of fluorescent agents available to target disease biomarkers or exogenous implants, have remained predominantly non-specific. That is, they do not preferentially accumulate in specific locations in vivo because doing so necessitates longer contrast retention, which is contraindicated for current gadolinium (Gd) agents. This double-edge sword implies that Gd agents can offer either rapid elimination (but lack specificity) or targeted accumulation (but with toxicity risks). For this reason, MRI contrast agent innovation has been severely constrained. Gd-free alternatives based on manganese (Mn) chelates have been largely ineffective, as they are inherently unstable. In this study, we present a Mn(III) porphyrin (MnP) platform for bioconjugation, offering the highest stability and chemical versatility compared to any other T1 contrast agent. We exploit the inherent metal stability conferred by porphyrins and the absence of pendant bases (found in Gd or Mn chelates) that limit versatile functionalization. As proof-of-principle, we demonstrate labeling of human serum albumin, a model protein, and collagen hydrogels for applications in in-vivo targeted imaging and material tracking, respectively. In-vitro and in-vivo results confirm unprecedented metal stability, ease of functionalization, and high T1 relaxivity. This new platform opens the door to ex-vivo validation by fluorescent imaging and multipurpose molecular imaging in vivo.


Assuntos
Meios de Contraste , Porfirinas , Humanos , Meios de Contraste/química , Manganês/química , Imageamento por Ressonância Magnética/métodos , Metais , Gadolínio/química , Quelantes
4.
J Magn Reson Imaging ; 58(4): 1139-1150, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36877190

RESUMO

BACKGROUND: A noninvasive method to track implanted biomaterials is desirable for real-time monitoring of material interactions with host tissues and assessment of efficacy and safety. PURPOSE: To explore quantitative in vivo tracking of polyurethane implants using a manganese porphyrin (MnP) contrast agent containing a covalent binding site for pairing to polymers. STUDY TYPE: Prospective, longitudinal. ANIMAL MODEL: Rodent model of dorsal subcutaneous implants (10 female Sprague Dawley rats). FIELD STRENGTH/SEQUENCE: A 3-T; two-dimensional (2D) T1-weighted spin-echo (SE), T2-weighted turbo SE, three-dimensional (3D) spoiled gradient-echo T1 mapping with variable flip angles. ASSESSMENT: A new MnP-vinyl contrast agent to covalently label polyurethane hydrogels was synthesized and chemically characterized. Stability of binding was assessed in vitro. MRI was performed in vitro on unlabeled hydrogels and hydrogels labeled at different concentrations, and in vivo on rats with unlabeled and labeled hydrogels implanted dorsally. In vivo MRI was performed at 1, 3, 5, and 7 weeks postimplantation. Implants were easily identified on T1-weighted SE, and fluid accumulation from inflammation was distinguished on T2-weighted turbo SE. Implants were segmented on contiguous T1-weighted SPGR slices using a threshold of 1.8 times the background muscle signal intensity; implant volume and mean T1 values were then calculated at each timepoint. Histopathology was performed on implants in the same plane as MRI and compared to imaging results. STATISTICAL TESTS: Unpaired t-tests and one-way analysis of variance (ANOVA) were used for comparisons. A P value <0.05 was considered to be statistically significant. RESULTS: Hydrogel labeling with MnP resulted in a significant T1 reduction in vitro (T1 = 517 ± 36 msec vs. 879 ± 147 msec unlabeled). Mean T1 values of labeled implants in rats increased significantly by 23% over time, from 1 to 7 weeks postimplantation (651 ± 49 msec to 801 ± 72 msec), indicating decreasing implant density. DATA CONCLUSION: Polymer-binding MnP enables in vivo tracking of vinyl-group coupling polymers. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 1.


Assuntos
Meios de Contraste , Porfirinas , Feminino , Ratos , Animais , Poliuretanos , Manganês , Hidrogéis , Estudos Prospectivos , Ratos Sprague-Dawley , Imageamento por Ressonância Magnética/métodos
5.
Front Cardiovasc Med ; 8: 715400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34355034

RESUMO

Aim: To perform a deep cardiac phenotyping of type II diabetes in a rat model, with the goal of gaining new insight into the temporality of microvascular dysfunction, cardiac dysfunction, and exercise intolerance at different stages of diabetes. Methods and Results: Diabetes was reproduced using a non-obese, diet-based, low-dose streptozotocin model in male rats (29 diabetic, 11 control). Time-course monitoring over 10 months was performed using echocardiography, treadmill exercise, photoacoustic perfusion imaging in myocardial and leg skeletal muscle, flow-mediated dilation, blood panel, and histology. Diabetic rats maintained a normal weight throughout. At early times (4 months), a non-significant reduction (30%) emerged in skeletal muscle perfusion and in exercise tolerance. At the same time, diabetic rats had a normal, slightly lower ejection fraction (63 vs. 71% control, p < 0.01), grade 1 diastolic dysfunction (E/A = 1.1 vs. 1.5, isovolumetric relaxation time = 34 vs. 27 ms; p < 0.01), mild systolic dysfunction (ejection time = 69 vs. 57 ms, isovolumetric contraction time = 21 vs. 17 ms; p < 0.01), and slightly enlarged left ventricle (8.3 vs. 7.6 mm diastole; p < 0.01). Diastolic dysfunction entered grade 3 at Month 8 (E/A = 1.7 vs. 1.3, p < 0.05). Exercise tolerance remained low in diabetic rats, with running distance declining by 60%; in contrast, control rats ran 60% farther by Month 5 (p < 0.05) and always remained above baseline. Leg muscle perfusion remained low in diabetic rats, becoming significantly lower than control by Month 10 (33% SO2 vs. 57% SO2, p < 0.01). Myocardial perfusion remained normal throughout. Femoral arterial reactivity was normal, but baseline velocity was 25% lower than control (p < 0.05). High blood pressure appeared late in diabetes (8 months). Histology confirmed absence of interstitial fibrosis, cardiomyocyte hypertrophy, or microvascular rarefaction in the diabetic heart. Rarefaction was also absent in leg skeletal muscle. Conclusion: Reduced skeletal muscle perfusion from microvascular dysfunction emerged early in diabetic rats, but myocardial perfusion remained normal throughout the study. At the same time, diabetic rats exhibited exercise intolerance and early cardiac dysfunction, in which changes related to heart failure with preserved ejection fraction (HFpEF) were seen. Importantly, skeletal muscle microvascular constriction advanced significantly before the late appearance of hypertension. HFpEF phenotypes such as cardiac hypertrophy, fibrosis, and rarefaction, which are typically associated with hypertension, were absent over the 10 month time-course of diabetes-related heart failure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...