Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Cybern ; 107(4): 491-4, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23982849

RESUMO

The synchrony vector, whose length stands for the vector strength (VS), is a means to quantify the amount of periodicity in a neuronal response to a given periodic signal, say, the stimulus. One usually chooses the input angular frequency and evaluates the synchrony vector as a weighted sum of exponentials taken at given experimental spike times of the neuronal response in combination with the driving input frequency. Given the experimental spike times, we replace the stimulus frequency by a variable probing frequency, study the synchrony vector in dependence upon this probing frequency, i.e., as a function of the frequency as a real variable, and exhibit both mathematically and experimentally a resonance behavior once the variable frequency is in the neighborhood of the stimulus frequency. Furthermore, a "resonating" VS is shown to be quite useful since one need not know the external frequency but can simply stick to the given spike times and analyze the ensuing resonance as the frequency varies, for example, to determine at the same time a "best" frequency and the corresponding VS. Finally, it is straightforward to determine the corresponding phase originating from, say, a delay as well.


Assuntos
Potenciais de Ação , Modelos Teóricos
2.
Chaos ; 21(4): 047508, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22225382

RESUMO

Quite often a response to some input with a specific frequency ν(○) can be described through a sequence of discrete events. Here, we study the synchrony vector, whose length stands for the vector strength, and in doing so focus on neuronal response in terms of spike times. The latter are supposed to be given by experiment. Instead of singling out the stimulus frequency ν(○) we study the synchrony vector as a function of the real frequency variable ν. Its length turns out to be a resonating vector strength in that it shows clear maxima in the neighborhood of ν(○) and multiples thereof, hence, allowing an easy way of determining response frequencies. We study this "resonating" vector strength for two concrete but rather different cases, viz., a specific midbrain neuron in the auditory system of cat and a primary detector neuron belonging to the electric sense of the wave-type electric fish Apteronotus leptorhynchus. We show that the resonating vector strength always performs a clear resonance correlated with the phase locking that it quantifies. We analyze the influence of noise and demonstrate how well the resonance associated with maximal vector strength indicates the dominant stimulus frequency. Furthermore, we exhibit how one can obtain a specific phase associated with, for instance, a delay in auditory analysis.


Assuntos
Potenciais de Ação/fisiologia , Percepção Auditiva/fisiologia , Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Gatos , Simulação por Computador , Modelos Estatísticos , Órgãos dos Sentidos/fisiologia , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...