Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(35): e2304323120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603735

RESUMO

The generation of appropriate behavioral responses involves dedicated neuronal circuits. The cortico-striatal-thalamo-cortical loop is especially important for the expression of motor routines and habits. Defects in this circuitry are closely linked to obsessive stereotypic behaviors, hallmarks of neuropsychiatric diseases including autism spectrum disorders (ASDs) and obsessive-compulsive disorders (OCDs). However, our knowledge of the essential synaptic machinery required to maintain balanced neurotransmission and plasticity within the cortico-striatal circuitry remains fragmentary. Mutations in the large synaptic scaffold protein intersectin1 (ITSN1) have been identified in patients presenting with ASD symptoms including stereotypic behaviors, although a causal relationship between stereotypic behavior and intersectin function has not been established. We report here that deletion of the two closely related proteins ITSN1 and ITSN2 leads to severe ASD/OCD-like behavioral alterations and defective cortico-striatal neurotransmission in knockout (KO) mice. Cortico-striatal function was compromised at multiple levels in ITSN1/2-depleted animals. Morphological analyses showed that the striatum of intersectin KO mice is decreased in size. Striatal neurons exhibit reduced complexity and an underdeveloped dendritic spine architecture. These morphological abnormalities correlate with defects in cortico-striatal neurotransmission and plasticity as well as reduced N-methyl-D-aspartate (NMDA) receptor currents as a consequence of postsynaptic NMDA receptor depletion. Our findings unravel a physiological role of intersectin in cortico-striatal neurotransmission to counteract ASD/OCD. Moreover, we delineate a molecular pathomechanism for the neuropsychiatric symptoms of patients carrying intersectin mutations that correlates with the observation that NMDA receptor dysfunction is a recurrent feature in the development of ASD/OCD-like symptoms.


Assuntos
Comportamento Compulsivo , Receptores de N-Metil-D-Aspartato , Animais , Camundongos , Receptores de N-Metil-D-Aspartato/genética , Comportamento Compulsivo/genética , Transmissão Sináptica , Camundongos Knockout
2.
EMBO J ; 41(9): e109352, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35318705

RESUMO

Neural circuit function requires mechanisms for controlling neurotransmitter release and the activity of neuronal networks, including modulation by synaptic contacts, synaptic plasticity, and homeostatic scaling. However, how neurons intrinsically monitor and feedback control presynaptic neurotransmitter release and synaptic vesicle (SV) recycling to restrict neuronal network activity remains poorly understood at the molecular level. Here, we investigated the reciprocal interplay between neuronal endosomes, organelles of central importance for the function of synapses, and synaptic activity. We show that elevated neuronal activity represses the synthesis of endosomal lipid phosphatidylinositol 3-phosphate [PI(3)P] by the lipid kinase VPS34. Neuronal activity in turn is regulated by endosomal PI(3)P, the depletion of which reduces neurotransmission as a consequence of perturbed SV endocytosis. We find that this mechanism involves Calpain 2-mediated hyperactivation of Cdk5 downstream of receptor- and activity-dependent calcium influx. Our results unravel an unexpected function for PI(3)P-containing neuronal endosomes in the control of presynaptic vesicle cycling and neurotransmission, which may explain the involvement of the PI(3)P-producing VPS34 kinase in neurological disease and neurodegeneration.


Assuntos
Transmissão Sináptica , Vesículas Sinápticas , Endocitose/fisiologia , Endossomos , Neurotransmissores , Fosfatos de Fosfatidilinositol , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
3.
Neuron ; 99(6): 1216-1232.e7, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30174114

RESUMO

Nervous system function relies on the polarized architecture of neurons, established by directional transport of pre- and postsynaptic cargoes. While delivery of postsynaptic components depends on the secretory pathway, the identity of the membrane compartment(s) supplying presynaptic active zone (AZ) and synaptic vesicle (SV) proteins is unclear. Live imaging in Drosophila larvae and mouse hippocampal neurons provides evidence that presynaptic biogenesis depends on axonal co-transport of SV and AZ proteins in presynaptic lysosome-related vesicles (PLVs). Loss of the lysosomal kinesin adaptor Arl8 results in the accumulation of SV- and AZ-protein-containing vesicles in neuronal cell bodies and a corresponding depletion of SV and AZ components from presynaptic sites, leading to impaired neurotransmission. Conversely, presynaptic function is facilitated upon overexpression of Arl8. Our data reveal an unexpected function for a lysosome-related organelle as an important building block for presynaptic biogenesis.


Assuntos
Transporte Axonal/fisiologia , Lisossomos/metabolismo , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Drosophila/metabolismo , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Transporte Proteico/fisiologia , Transmissão Sináptica/fisiologia
4.
Neuron ; 93(4): 854-866.e4, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28231467

RESUMO

Neurotransmission is based on the exocytic fusion of synaptic vesicles (SVs) followed by endocytic membrane retrieval and the reformation of SVs. Recent data suggest that at physiological temperature SVs are internalized via clathrin-independent ultrafast endocytosis (UFE) within hundreds of milliseconds, while other studies have postulated a key role for clathrin-mediated endocytosis (CME) of SV proteins on a timescale of seconds to tens of seconds. Here we demonstrate using cultured hippocampal neurons as a model that at physiological temperature SV endocytosis occurs on several timescales from less than a second to several seconds, yet, is largely independent of clathrin. Clathrin-independent endocytosis (CIE) of SV membranes is mediated by actin-nucleating formins such as mDia1, which are required for the formation of presynaptic endosome-like vacuoles from which SVs reform. Our results resolve previous discrepancies in the field and suggest that SV membranes are predominantly retrieved via CIE mediated by formin-dependent actin assembly.


Assuntos
Actinas/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Proteínas de Transporte/metabolismo , Clatrina/metabolismo , Hipocampo/metabolismo , Camundongos Transgênicos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...