Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 93, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605417

RESUMO

Unraveling bacterial gene function drives progress in various areas, such as food production, pharmacology, and ecology. While omics technologies capture high-dimensional phenotypic data, linking them to genomic data is challenging, leaving 40-60% of bacterial genes undescribed. To address this bottleneck, we introduce Scoary2, an ultra-fast microbial genome-wide association studies (mGWAS) software. With its data exploration app and improved performance, Scoary2 is the first tool to enable the study of large phenotypic datasets using mGWAS. As proof of concept, we explore the metabolome of yogurts, each produced with a different Propionibacterium reichii strain and discover two genes affecting carnitine metabolism.


Assuntos
Estudo de Associação Genômica Ampla , Multiômica , Fenótipo , Genes Bacterianos , Genômica
3.
Microbiome ; 10(1): 137, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36028909

RESUMO

BACKGROUND: Phages are key drivers of genomic diversity in bacterial populations as they impose strong selective pressure on the evolution of bacterial defense mechanisms across closely related strains. The pan-immunity model suggests that such diversity is maintained because the effective immune system of a bacterial species is the one distributed across all strains present in the community. However, only few studies have analyzed the distribution of bacterial defense systems at the community-level, mostly focusing on CRISPR and comparing samples from complex environments. Here, we studied 2778 bacterial genomes and 188 metagenomes from cheese-associated communities, which are dominated by a few bacterial taxa and occur in relatively stable environments. RESULTS: We corroborate previous laboratory findings that in cheese-associated communities nearly identical strains contain diverse and highly variable arsenals of innate and adaptive (i.e., CRISPR-Cas) immunity systems suggesting rapid turnover. CRISPR spacer abundance correlated with the abundance of matching target sequences across the metagenomes providing evidence that the identified defense repertoires are functional and under selection. While these characteristics align with the pan-immunity model, the detected CRISPR spacers only covered a subset of the phages previously identified in cheese, providing evidence that CRISPR does not enable complete immunity against all phages, and that the innate immune mechanisms may have complementary roles. CONCLUSIONS: Our findings show that the evolution of bacterial defense mechanisms is a highly dynamic process and highlight that experimentally tractable, low complexity communities such as those found in cheese, can help to understand ecological and molecular processes underlying phage-defense system relationships. These findings can have implications for the design of robust synthetic communities used in biotechnology and the food industry. Video Abstract.


Assuntos
Bacteriófagos , Queijo , Bactérias , Genoma Bacteriano , Metagenoma
4.
Front Nutr ; 9: 851931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600812

RESUMO

The identification and validation of biomarkers of food intake (BFIs) is a promising approach to develop more objective and complementary tools to the traditional dietary assessment methods. Concerning dairy, their evaluation in terms of intake is not simple, given the variety of existing foods, making it difficult to establish the association between specific dairy products consumption and the effects on human health, which is also dependent on the study population. Here, we aimed at identifying BFI of both milk (M) and yogurt (Y) in 14 healthy young (20-35 years) and 14 older (65-80 years). After a 3-week run-in period of dairy exclusion from the diet, the subjects acutely consumed 600 ml of M or Y. Metabolomics analyses were conducted on serum samples during the following 6 h (LC-MS and GC-MS). Several metabolites showing increased iAUC after milk or yogurt intake were considered as potential BFI, including lactose (M > Y, 2-fold), galactitol (M > Y, 1.5-fold), galactonate (M > Y, 1.2-fold), sphingosine-1-phosphate (M > Y from 2.1-fold), as well as an annotated disaccharide (Y > M, 3.6-fold). Delayed serum kinetics were also observed after Y compared to M intake lysine (+22 min), phenylalanine (+45 min), tyrosine (+30min), threonine (+38 min) 3-phenyllactic acid (+30 min), lactose (+30 min), galactitol (+45min) and galactonate (+30 min). The statistical significance of certain discriminant metabolites, such as sphingosine-1-phosphate and several free fatty acids, was not maintained in the older group. This could be related to the physiological modifications induced by aging, like dysregulated lipid metabolism, including delayed appearance of dodecanoic acid (+60 min) or altered postprandial appearance of myristic acid (+70% Cmax), 3-dehydroxycarnitine (-26% Cmin), decanoylcarnitine (-51% Cmin) and dodecanoylcarnitine (-40% Cmin). In conclusion, candidate BFI of milk or yogurt could be identified based on the modified postprandial response resulting from the fermentation of milk to yogurt. Moreover, population specificities (e.g., aging) should also be considered in future studies to obtain more accurate and specific BFI.

5.
Front Microbiol ; 13: 1057754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605504

RESUMO

Listeria monocytogenes (Lm) accounts for serious public health and food safety problems owing to its stress resilience and pathogenicity. Based on their regulatory involvement in global gene expression events, cold-shock domain family proteins (Csps) are crucial in expression of various stress fitness and virulence phenotypes in bacteria. Lm possesses three Csps (CspA, CspB, and CspD) whose regulatory roles in the context of the genetic diversity of this bacterium are not yet fully understood. We examined the impacts of Csps deficiency on Lm nutrient metabolism and stress tolerance using a set of csp deletion mutants generated in different genetic backgrounds. Phenotype microarrays (PM) analysis showed that the absence of Csps in ∆cspABD reduces carbon (C-) source utilization capacity and increases Lm sensitivity to osmotic, pH, various chemical, and antimicrobial stress conditions. Single and double csp deletion mutants in different Lm genetic backgrounds were used to further dissect the roles of individual Csps in these phenotypes. Selected PM-based observations were further corroborated through targeted phenotypic assays, confirming that Csps are crucial in Lm for optimal utilization of various C-sources including rhamnose and glucose as well as tolerance against NaCl, ß-phenyethylamine (PEA), and food relevant detergent stress conditions. Strain and genetic lineage background-based differences, division of labour, epistasis, and functional redundancies among the Csps were uncovered with respect to their roles in various processes including C-source utilization, cold, and PEA stress resistance. Finally, targeted transcriptome analysis was performed, revealing the activation of csp gene expression under defined stress conditions and the impact of Csps on expression regulation of selected rhamnose utilization genes. Overall, our study shows that Csps play important roles in nutrient utilization and stress responses in Lm strains, contributing to traits that are central to the public health and food safety impacts of this pathogen.

6.
ISME J ; 16(2): 388-399, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34363005

RESUMO

Undefined starter cultures are poorly characterized bacterial communities from environmental origin used in cheese making. They are phenotypically stable and have evolved through domestication by repeated propagation in closed and highly controlled environments over centuries. This makes them interesting for understanding eco-evolutionary dynamics governing microbial communities. While cheese starter cultures are known to be dominated by a few bacterial species, little is known about the composition, functional relevance, and temporal dynamics of strain-level diversity. Here, we applied shotgun metagenomics to an important Swiss cheese starter culture and analyzed historical and experimental samples reflecting 82 years of starter culture propagation. We found that the bacterial community is highly stable and dominated by only a few coexisting strains of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. lactis. Genome sequencing, metabolomics analysis, and co-culturing experiments of 43 isolates show that these strains are functionally redundant, but differ tremendously in their phage resistance potential. Moreover, we identified two highly abundant Streptococcus phages that seem to stably coexist in the community without any negative impact on bacterial growth or strain persistence, and despite the presence of a large and diverse repertoire of matching CRISPR spacers. Our findings show that functionally equivalent strains can coexist in domesticated microbial communities and highlight an important role of bacteria-phage interactions that are different from kill-the-winner dynamics.


Assuntos
Bacteriófagos , Microbiota , Bactérias , Bacteriófagos/genética , Microbiologia de Alimentos , Metagenômica
7.
FEMS Microbiol Lett ; 368(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34223876

RESUMO

Fermentation is one of if not the oldest food processing technique, yet it is still an emerging field when it comes to its numerous mechanisms of action and potential applications. The effect of microbial activity on the taste, bioavailability and preservation of the nutrients and the different food matrices has been deciphered by the insights of molecular microbiology. Among those roles of fermentation in the food chain, biopreservation remains the one most debated. Presumably because it has been underestimated for quite a while, and only considered - based on a food safety and technological approach - from the toxicological and chemical perspective. Biopreservation is not considered as a traditional use, where it has been by design - but forgotten - as the initial goal of fermentation. The 'modern' use of biopreservation is also slightly different from the traditional use, due mainly to changes in cooling of food and other ways of preservation, Extending shelf life is considered to be one of the properties of food additives, classifying - from our perspective - biopreservation wrongly and forgetting the role of fermentation and food cultures. The present review will summarize the current approaches of fermentation as a way to preserve and protect the food, considering the different way in which food cultures and this application could help tackle food waste as an additional control measure to ensure the safety of the food.


Assuntos
Alimentos Fermentados/microbiologia , Microbiologia de Alimentos , Conservação de Alimentos , Ácidos/metabolismo , Antibacterianos/metabolismo , Antifúngicos/metabolismo , Bacteriocinas/metabolismo , Fermentação , Alimentos Fermentados/análise , Alimentos Fermentados/normas , Inocuidade dos Alimentos , Fatores Matadores de Levedura/metabolismo , Interações Microbianas
8.
J Agric Food Chem ; 69(2): 717-729, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33406836

RESUMO

This work aimed to determine the formation over time of 3-methylbutanal and 3-methylbutan-1-ol recognized as malty during the manufacture of Raclette-type cheese and the fermention of reconstituted skim milk, and filter-sterilized MRS broth. Using dynamic headspace-vacuum transfer in trap extraction followed by gas chromatography coupled with mass spectrometry-olfactometry (DHS-VTT-GC-MS-O) as a screening method for the malty compounds, five compounds (2-methylpropanal, 2- and 3-methylbutanal, and 2- and 3-methylbutan-1-ol) were identified as potential compounds causing the malty aroma in starter culture development and Raclette-type cheeses. Focus on compounds having a predominant sensorial effect (3-methylbutanal and 3-methylbutan-1-ol), spikings of leucine, 13C-labeled leucine, α-ketoisocaproic acid, and α-ketoglutaric acid provided a better understanding of their formation pathway. This study highlighted the discrepancies in the formation of 3-methylbutanal and 3-methylbutan-1-ol between the growth media; namely, despite the presence of free leucine available in MRS and the addition of an excess, no increase of the target compounds was observed. The concentration of these compounds in MRS increased only when α-ketoglutaric acid or α-ketoisocaproic acid was added, and a preference for the pathway to α-hydroxyisocaproic acid instead of 3-methylbutanal was shown. In addition, a formation of 3-methylbutanal when the bacteria were not yet active was observed when spiking α-ketoisocaproic acid, which potentially indicates that this part of the metabolism could take place extracellularly. These results could potentially unveil other, not-yet-identified reactants, directly influencing the production of compounds responsible for the malty aroma in Raclette cheese.


Assuntos
Aldeídos/metabolismo , Queijo/análise , Leite/química , Odorantes/análise , Animais , Bovinos , Queijo/microbiologia , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Lactobacillales/metabolismo , Leite/microbiologia , Olfatometria , Suíça
9.
Front Microbiol ; 11: 1726, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849369

RESUMO

Listeria monocytogenes associated prosthetic joint infections (PJI) are a rare but increasing clinical problem of listeriosis. We characterized two isolates of the same L. monocytogenes strain isolated within five years of each other from a recurrent human prosthetic joint infection. The two isolates although clonally identical were phenotypically distinct confirming that the original infection strain had evolved within the human host PJI environment giving rise to a phenotypically distinct variant. The recurrent PJI isolate displayed various phenotypic differences compared to the parental original PJI isolate including diminished growth and carbon source metabolism, as well as altered morphology and increased stress sensitivity. The PJI isolates were both diminished in virulence due to an identical truncation mutation in the major virulence regulator PrfA. Genome wide sequence comparison provided conclusive evidence that the two isolates were identical clonal descendants of the same L. monocytogenes strain that had evolved through acquisition of various single nucleotide polymorphisms (SNPs) as well as insertion and deletion events (InDels) during a persistent human PJI. Acquired genetic changes included a specific mutation causing premature stop codon (PMSC) and truncation of RNAse J1 protein. Based on analysis of this naturally truncated as well as other complete RNAse J1 deletion mutants we show that the long-term survival of this specific L. monocytogenes strain within the prosthetic joint might in part be explained by the rnjA PMSC mutation that diminishes virulence and activation of the host immune system in a zebrafish embryo localized infection model. Overall our analysis of this special natural case provides insights into random mutation events and molecular mechanisms that might be associated with the adaptation and short-term evolution of this specific L. monocytogenes strain within a persistent human PJI environment.

10.
Front Microbiol ; 10: 957, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130938

RESUMO

A combination of phenotype microarrays, targeted stress resistance and virulence assays and comparative genome analysis was used to compare a set of Listeria monocytogenes strains including those involved in previous Swiss foodborne listeriosis outbreaks. Despite being highly syntenic in gene content these strains showed significant phenotypic variation in utilization of different carbon (C)-sources as well as in resistance of osmotic and pH stress conditions that are relevant to host and food associated environments. An outbreak strain from the 2005 Swiss Tomme cheese listeriosis outbreak (Lm3163) showed the highest versatility in C-sources utilized whereas the strain responsible for the 1983 to 1987 Vacherin Montd'or cheese listeriosis outbreak (LL195) showed the highest tolerance to both osmotic and pH stress conditions among the examined strains. Inclusion of L-norvaline led to enhanced resistance of acidic stress in all the examined strains and there were strain-strain-specific differences observed in the ability of other amino acids and urea to enhance acid stress resistance in L. monocytogenes. A strain dependent inhibition pattern was also observed upon inclusion of ß-phenylethylamine under alkaline stress conditions. In targeted phenotypic analysis the strain-specific differences in salt stress tolerance uncovered in phenotypic microarrays were corroborated and variations in host cell invasion and virulence among the examined strains were also revealed. Outbreak associated strains representing lineage I serotype 4b showed superior pathogenicity in a zebrafish infection model whilst Lm3163 a lineage II serotype 1/2a outbreak strain demonstrated the highest cellular invasion capacity amongst the tested strains. A genome wide sequence comparison of the strains only revealed few genetic differences between the strains suggesting that variations in gene regulation and expression are largely responsible for the phenotypic differences revealed among the examined strains. Our results have generated data that provides a potential basis for the future design of improved Listeria specific media to enhance routine detection and isolation of this pathogen as well as provide knowledge for developing novel methods for its control in food.

11.
FEMS Microbiol Ecol ; 94(11)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30101286

RESUMO

Environmental antibiotic-resistant bacteria (ARB) can be transferred to humans through foods. Fresh produce in particular is an ideal vector due to frequent raw consumption. A major contamination source of fresh produce is irrigation water. We hypothesized that water quality significantly affects loads of ARB and their diversity on fresh produce despite various other contamination sources present under agricultural practice conditions. Chive irrigated from an open-top reservoir or sterile-filtered water (control) was examined. Heterotrophic plate counts (HPC) and ARB were determined for water and chive with emphasis on Escherichia coli and Enterococcus spp. High HPC of freshly planted chive decreased over time and were significantly lower on control- vs. reservoir-irrigated chive at harvest (1.3 log (CFU/g) lower). Ciprofloxacin- and ceftazidime-resistant bacteria were significantly lower on control-irrigated chive at harvest and end of shelf life (up to 1.8 log (CFU/g) lower). Escherichia coli and Enterococcus spp. repeatedly isolated from water and chive proved resistant to up to six or four antibiotic classes (80% or 49% multidrug-resistant, respectively). Microbial source tracking identified E. coli-ST1056 along the irrigation chain and on chive. Whole-genome sequencing revealed that E. coli-ST1056 from both environments were clonal and carried the same transmissible multidrug-resistance plasmid, proving water as source of chive contamination. These findings emphasize the urgent need for guidelines concerning ARB in irrigation water and development of affordable water disinfection technologies to diminish ARB on irrigated produce.


Assuntos
Irrigação Agrícola , Farmacorresistência Bacteriana Múltipla , Microbiologia da Água , Bactérias/isolamento & purificação , Cebolinha-Francesa/microbiologia , Enterococcus/isolamento & purificação , Escherichia coli/isolamento & purificação , Qualidade da Água
12.
J Nutr ; 148(6): 851-860, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788433

RESUMO

Background: Fermentation is a widely used method of natural food preservation that has consequences on the nutritional value of the transformed food. Fermented dairy products are increasingly investigated in view of their ability to exert health benefits beyond their nutritional qualities. Objective: To explore the mechanisms underpinning the health benefits of fermented dairy intake, the present study followed the effects of milk fermentation, from changes in the product metabolome to consequences on the human serum metabolome after its ingestion. Methods: A randomized crossover study design was conducted in 14 healthy men [mean age: 24.6 y; mean body mass index (in kg/m2): 21.8]. At the beginning of each test phase, serum samples were taken 6 h postprandially after the ingestion of 800 g of a nonfermented milk or a probiotic yogurt. During the 2-wk test phases, subjects consumed 400 g of the assigned test product daily (200 g, 2 times/d). Serum samples were taken from fasting participants at the end of each test phase. The serum metabolome was assessed through the use of LC-MS-based untargeted metabolomics. Results: Postprandial serum metabolomes after milk or yogurt intake could be differentiated [orthogonal projections to latent structures discriminant analysis (OPLS-DA) Q2 = 0.74]. Yogurt intake was characterized by higher concentrations of 7 free amino acids (including proline, P = 0.03), reduced concentrations of 5 bile acids (including glycocholic acid, P = 0.04), and modulation of 4 indole derivative compounds (including indole lactic acid, P = 0.01). Fasting serum samples after 2 wk of daily intake of milk or yogurt could also be differentiated based on their metabolic profiles (OPLS-DA Q2 = 0.56) and were discussed in light of the postprandial results. Conclusion: Metabolic pathways related to amino acids, indole derivatives, and bile acids were modulated in healthy men by the intake of yogurt. Further investigation to explore novel health effects of fermented dairy products is warranted.This trial was registered at clinicaltrials.gov as NCT02230345.


Assuntos
Proteínas Sanguíneas/metabolismo , Metaboloma , Leite , Pegadas de Proteínas , Iogurte , Adulto , Animais , Estudos Cross-Over , Dieta , Regulação da Expressão Gênica , Humanos , Masculino , Período Pós-Prandial , Adulto Jovem
13.
Br J Nutr ; 118(12): 1070-1077, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29198188

RESUMO

The absence of a dedicated transport for disaccharides in the intestine implicates that the metabolic use of dietary lactose relies on its prior hydrolysis at the intestinal brush border. Consequently, lactose in blood or urine has mostly been associated with specific cases in which the gastrointestinal barrier is damaged. On the other hand, lactose appears in the blood of lactating women and has been detected in the blood and urine of healthy men, indicating that the presence of lactose in the circulation of healthy subjects is not incompatible with normal physiology. In this cross-over study we have characterised the postprandial kinetics of lactose, and its major constituent, galactose, in the serum of fourteen healthy men who consumed a unique dose of 800 g milk or yogurt. Genetic testing for lactase persistence and microbiota profiling of the subjects were also performed. Data revealed that lactose does appear in serum after dairy intake, although with delayed kinetics compared with galactose. Median serum concentrations of approximately 0·02 mmol/l lactose and approximately 0·2 mmol/l galactose were observed after the ingestion of milk and yogurt respectively. The serum concentrations of lactose were inversely correlated with the concentrations of galactose, and the variability observed between the subjects' responses could not be explained by the presence of the lactase persistence allele. Finally, lactose levels have been associated with the abundance of the Veillonella genus in faecal microbiota. The measurement of systemic lactose following dietary intake could provide information about lactose metabolism and nutrient transport processes under normal or pathological conditions.


Assuntos
Dieta , Lactose/sangue , Leite , Iogurte , Adolescente , Adulto , Alelos , Animais , Estudos Cross-Over , Método Duplo-Cego , Fezes/microbiologia , Galactose/sangue , Microbioma Gastrointestinal , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Masculino , Período Pós-Prandial , Veillonella/isolamento & purificação , Adulto Jovem , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
14.
Br J Nutr ; 117(9): 1312-1322, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28558854

RESUMO

Probiotic yogurt and milk supplemented with probiotics have been investigated for their role in 'low-grade' inflammation but evidence for their efficacy is inconclusive. This study explores the impact of probiotic yogurt on metabolic and inflammatory biomarkers, with a parallel study of gut microbiota dynamics. The randomised cross-over study was conducted in fourteen healthy, young men to test probiotic yogurt compared with milk acidified with 2 % d-(+)-glucono-δ-lactone during a 2-week intervention (400 g/d). Fasting assessments, a high-fat meal test (HFM) and microbiota analyses were used to assess the intervention effects. Baseline assessments for the HFM were carried out after a run-in during which normal milk was provided. No significant differences in the inflammatory response to the HFM were observed after probiotic yogurt compared with acidified milk intake; however, both products were associated with significant reductions in the inflammatory response to the HFM compared with the baseline tests (assessed by IL6, TNFα and chemokine ligand 5) (P<0·001). These observations were accompanied by significant changes in microbiota taxa, including decreased abundance of Bilophila wadsworthia after acidified milk (log 2-fold-change (FC)=-1·5, P adj=0·05) and probiotic yogurt intake (FC=-1·3, P adj=0·03), increased abundance of Bifidobacterium species after acidified milk intake (FC=1·4, P adj=0·04) and detection of Lactobacillus delbrueckii spp. bulgaricus (FC=7·0, P adj<0·01) and Streptococcus salivarius spp. thermophilus (FC=6·0, P adj<0·01) after probiotic yogurt intake. Probiotic yogurt and acidified milk similarly reduce postprandial inflammation that is associated with a HFM while inducing distinct changes in the gut microbiota of healthy men. These observations could be relevant for dietary treatments that target 'low-grade' inflammation.


Assuntos
Trato Gastrointestinal/microbiologia , Leite/química , Probióticos , Iogurte , Adulto , Animais , Gorduras na Dieta , Método Duplo-Cego , Humanos , Masculino , Refeições , Microbiota/fisiologia , Período Pós-Prandial , Adulto Jovem
15.
Chimia (Aarau) ; 70(5): 349-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27198813

RESUMO

The manufacture of traditional Swiss-type cheeses adheres to strict rules, so as to guarantee quality and purity of the end product. This raises production costs and means consumers pay more. It also opens the door to cut-rate forgeries claiming to be made to the stringent standards and causing considerable economic losses to the entire dairy sector. In order to combat product counterfeiting, Agroscope has developed proof-of-origin cultures that allow the identification of copycats. Carefully selected lactic acid bacteria, having uniquely located insertion sequence elements, are proliferated by fermentation and subsequently dried by lyophilization. The proof-of-origin culture is added during the cheese production process and sustains maturation. These so-called 'biological markers' can be traced using polymerase chain reaction (PCR) methods, which allow authentication even if the cheese is cut into pieces or grated. They do not lead to any alteration of the cheese's taste or texture, and are compatible with the strict 'protected designation of origin' (PDO) specifications. The proof-of-origin cultures are used for the protection of several traditional Swiss-cheese varieties, such as Emmental PDO, Tête de Moine PDO, and Appenzeller(®). A market survey of Emmental PDO showed that the system is effective in revealing fraud and has the power to enforce corrective measures.

16.
BMC Microbiol ; 9: 87, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19426473

RESUMO

BACKGROUND: Probiotic bacteria are thought to play an important role in the digestive system and therefore have to survive the passage from stomach to intestines. Recently, a novel approach to simulate the passage from stomach to intestines in a single bioreactor was developed. The advantage of this automated one reactor system was the ability to test the influence of acid, bile salts and pancreatin.Lactobacillus gasseri K7 is a strain isolated from infant faeces with properties making the strain interesting for cheese production. In this study, a single reactor system was used to evaluate the survival of L. gasseri K7 and selected bifidobacteria from our collection through the stomach-intestine passage. RESULTS: Initial screening for acid resistance in acidified culture media showed a low tolerance of Bifidobacterium dentium for this condition indicating low survival in the passage. Similar results were achieved with B. longum subsp. infantis whereas B. animalis subsp. lactis had a high survival.These initial results were confirmed in the bioreactor model of the stomach-intestine passage. B. animalis subsp. lactis had the highest survival rate (10%) attaining approximately 5 x 106 cfu ml-1 compared to the other tested bifidobacteria strains which were reduced by a factor of up to 106. Lactobacillus gasseri K7 was less resistant than B. animalis subsp. lactis but survived at cell concentrations approximately 1000 times higher than other bifidobacteria. CONCLUSION: In this study, we were able to show that L. gasseri K7 had a high survival rate in the stomach-intestine passage. By comparing the results with a previous study in piglets we could confirm the reliability of our simulation. Of the tested bifidobacteria strains, only B. animalis subsp. lactis showed acceptable survival for a successful passage in the simulation system.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Trânsito Gastrointestinal , Lactobacillus/crescimento & desenvolvimento , Probióticos , Bifidobacterium/isolamento & purificação , Contagem de Colônia Microbiana , Concentração de Íons de Hidrogênio , Intestinos/microbiologia , Lactobacillus/isolamento & purificação , Modelos Biológicos , Estômago/microbiologia
17.
BMC Microbiol ; 9: 106, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19470161

RESUMO

BACKGROUND: Antimicrobial susceptibility testing of microorganisms is performed by either disc diffusion or broth dilution tests. In clinical use, the tests are often still performed manually although automated systems exist. Most systems, however, are based on turbidometric methods which have well-known drawbacks. RESULTS: In this study we evaluated isothermal micro calorimetry (IMC) for the determination of minimal inhibitory concentrations (MICs) of 12 antibiotics for five micro-organisms. Here we present the data for the 12 antibiotics and two representative microorganisms E. coli (a Gram-) and S. aureus (a Gram+). IMC was able to determine the MICs correctly according to CLSI values. Since MICs require 24 hours, time was not reduced. However, IMC provided new additional data - a continuous record of heat-producing bacterial activity (e.g. growth) in calorimetry ampoules at subinhibitory antibiotic concentrations. Key features of the heatflow (P) and aggregate heat (Q) vs. time curves were identified (t delay and Delta Q/Delta t respectively). Antibiotics with similar modes of action proved to have similar effects on t delay and/or Delta Q/Delta t. CONCLUSION: IMC can be a powerful tool for determining the effects of antibiotics on microorganisms in vitro. It easily provides accurate MICs - plus a potential means for analyzing and comparing the modes of action of antibiotics at subinhibitory concentrations. Also IMC is completely passive, so after evaluation, ampoule contents (media, bacteria, etc.) can be analyzed by any other method desired.


Assuntos
Antibacterianos/farmacologia , Calorimetria/métodos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos
18.
J Clin Microbiol ; 46(6): 2083-7, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18417657

RESUMO

In this study, the use of isothermal microcalorimetry (IMC) for differentiation between methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) and MIC determination was evaluated. It was possible to differentiate between MRSA and MSSA within 4 h, whereas the standard method required 24 h. The MICs of cefoxitin were successfully determined for MRSA and MSSA by using IMC.


Assuntos
Antibacterianos/farmacologia , Calorimetria/métodos , Resistência a Meticilina , Meticilina/farmacologia , Staphylococcus aureus/classificação , Staphylococcus aureus/efeitos dos fármacos , Calorimetria/instrumentação , Cefoxitina/farmacologia , Temperatura Alta , Humanos , Testes de Sensibilidade Microbiana/métodos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , Fatores de Tempo
19.
BMC Biotechnol ; 7: 55, 2007 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-17850651

RESUMO

BACKGROUND: Bacteriocin-producing lactic acid bacteria are commonly used as natural protective cultures. Among them, strains of the genus Pediococcus are particularly interesting for their ability to produce pediocin, a broad spectrum antimicrobial peptide with a strong antagonistic activity against the food-borne pathogen Listeria monocytogenes. Furthermore, there is increasing interest in isolating new bacteriocin-producing strains of human intestinal origin that could be developed for probiotic effects and inhibition of pathogenic bacteria in the gut. In this work, we typed a new strain, co-isolated from baby faeces together with a Bifidobacterium thermophilum strain, and characterized its proteinaceous compound with strong antilisterial activity. RESULTS: The newly isolated strain UVA1 was identified as a Pediococcus acidilactici by carbohydrate fermentation profile, growth at 50 degrees C and 16S rDNA sequencing. The partially purified bacteriocin was heat resistant up to 100 degrees C, active over a wide range of pH (2 to 9) and susceptible to proteolytic enzymes. The molecular weight, estimated by SDS-PAGE, was similar to that of pediocin AcH/PA-1 (4.5 kDa). P. acidilactici UVA1 harboured a 9.5-kb plasmid that could be cured easily, which resulted in the loss of the antimicrobial activity. Southern hybridization using the DIG-labelled pedA-probe established that the bacteriocin gene was plasmid-borne as for all pediocin described so far. Nucleotide sequence of the whole operon (3.5 kb) showed almost 100 % similarity to the pediocin AcH/PA-1 operon. The mRNA transcript for pedA could be detected in P. acidilactici UVA1 but not in the cured derivative, confirming the expression of the pedA-gene in UVA1. Using a new real-time PCR assay, eleven out of seventeen human faecal samples tested were found to contain pedA-DNA. CONCLUSION: We identified and characterised the first pediocin produced by a human intestinal Pediococcus acidilactici isolate and successfully developed a new real-time PCR assay to show the large distribution of pedA-containing strains in baby faecal samples.


Assuntos
Bacteriocinas/genética , Fezes/microbiologia , Pediococcus/genética , Reação em Cadeia da Polimerase/métodos , Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Southern Blotting , Eletroforese em Gel de Poliacrilamida , Fermentação , Humanos , Concentração de Íons de Hidrogênio , Listeria/efeitos dos fármacos , Peso Molecular , Pediococcus/isolamento & purificação , Pediococcus/metabolismo , Fenótipo , Plasmídeos/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
20.
BMC Microbiol ; 7: 79, 2007 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-17711586

RESUMO

BACKGROUND: Bifidobacteria are found at varying prevalence in human microbiota and seem to play an important role in the human gastrointestinal tract (GIT). Bifidobacteria are highly adapted to the human GIT which is reflected in the genome sequence of a Bifidobacterim longum isolate. The competitiveness against other bacteria is not fully understood yet but may be related to the production of antimicrobial compounds such as bacteriocins. In a previous study, 34 Bifidobacterium isolates have been isolated from baby faeces among which six showed proteinaceous antilisterial activity against Listeria monocytogenes. In this study, one of these isolates, RBL67, was further identified and characterized. RESULTS: Bifidobacterium isolate RBL67 was classified and characterized using a polyphasic approach. RBL67 was classified as Bifidobacterium thermophilum based on phenotypic and DNA-DNA hybridization characteristics, although 16S rDNA analyses and partial groEL sequences showed higher homology with B. thermacidophilum subsp. porcinum and B. thermacidophilum subsp. thermacidophilum, respectively. RBL67 was moderately oxygen-tolerant and was able to grow at pH 4 and at a temperature of 47 degrees C. CONCLUSION: In order to assign RBL67 to a species, a polyphasic approach was used. This resulted in the classification of RBL67 as a Bifidobacterium thermophilum strain. To our knowledge, this is the first report about B. thermophilum isolated from baby faeces since the B. thermophilum strains were related to ruminants and swine faeces before. B. thermophilum was previously only isolated from animal sources and was therefore suggested to be used as differential species between animal and human contamination. Our findings may disapprove this suggestion and further studies are now conducted to determine whether B. thermophilum is distributed broader in human faeces. Furthermore, the postulated differentiation between human and animal strains by growth above 45 degrees C is no longer valid since B. thermophilum is able to grow at 47 degrees C. In our study, 16S rDNA and partial groEL sequence analysis were not able to clearly assign RBL67 to a species and were contradictory. Our study suggests that partial groEL sequences may not be reliable as a single tool for species differentiation.


Assuntos
Infecções por Bifidobacteriales/microbiologia , Bifidobacterium/classificação , Bifidobacterium/genética , Fezes/microbiologia , Oxigênio/metabolismo , Aerobiose , Anaerobiose , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Bifidobacterium/isolamento & purificação , Bifidobacterium/fisiologia , Chaperonina 60/genética , Humanos , Concentração de Íons de Hidrogênio , Lactente , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...