Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 93(1): 324-30, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23465937

RESUMO

Cyclodextrins (CDs) can form inclusion complexes with a wide variety of molecules making them very attractive in different areas, such as pharmaceutics, biochemistry, food chemistry and textile. In this communication we will report on the physico-chemical characterization of cellulose modified with CDs by means of infra-red spectroscopy (FTIR), cross polarization magic angle spinning solid state nuclear magnetic resonance (CP-MAS NMR), polarized optical microscopy (POM) and thermal gravimetric analysis (TGA). Both CP-MAS NMR and FTIR indicate that CDs are chemically attached to cellulose backbone through the formation of ester bonds. Furthermore, the CD-grafted cellulose was dissolved in a "superphosphoric" acid solution but, despite the increase of hydrophilicity due to the modification, POM revealed that grafted cellulose was less soluble when compared to the unmodified polymer. The formation of a complex CD-cellulose network is suggested.


Assuntos
Celulose/química , Ciclodextrinas/química , Fenômenos Químicos , Espectroscopia de Ressonância Magnética , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Colloid Interface Sci ; 327(1): 75-83, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18752805

RESUMO

The effect of the antimicrobial agent TMPAC (3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride) on the cellulase activity on model cellulose substrate was investigated by in situ-null ellipsometry. The cellulases used were extracted from Trichoderma viride and Aspergillus niger, and the model cellulose film was prepared by spin-coating silicon oxide wafers with cellulose solubilized in N-methylmorpholine-N-oxide/dimethyl sulfoxide solution. Upon enzyme addition to the previously equilibrated cellulose film, the initial enzyme adsorption on the substrate was followed by an overall decrease in film mass owing to enzymatic digestion of the cellulose. The loss of cellulose film mass was associated with a non-monotonously behavior of the cellulose film thickness. The activities of the two enzymes were different, a much higher degradation rate being observed for the Trichoderma viride cellulase. The degradation rate with this cellulase decreased significantly when the cellulose film was treated with the antimicrobial agent. The antimicrobial agent did not affect the cellulose degradation catalyzed by the Aspergillus niger cellulase. It was, hence, demonstrated for the first time that, depending on the cellulase type, the antimicrobial agent can inhibit enzymatic activity at the solid-liquid interface.


Assuntos
Anti-Infecciosos/farmacologia , Celulases/antagonistas & inibidores , Celulases/metabolismo , Celulose/metabolismo , Aspergillus niger/enzimologia , Cinética , Modelos Biológicos , Trichoderma/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...