Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 69(5): 1966-1983, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34554606

RESUMO

The E6 region has higher protuberant probability annealing than consensus probe focusing on another region in the human papillomavirus (HPV) genome in terms of detection and screening method. Here, we designed the first multiple virus single-stranded deoxyribonucleic acid (ssDNA) for multiple detections in an early phase of screening for cervical cancer in the E6 region and became a fundamental evolution of detection electrochemical HPV biosensor. Gene profiling of the virus ssDNA sequences has been carried by high-end bioinformatics tools such as GenBank, Basic Local Alignment Searching Tools (BLAST), and Clustal OMEGA in a row. The output from bioinformatics tools resulted in 100% of similarities between our virus ssDNA probe and HPV complete genome in the databases. The cross-validation between HPV genome and our designed virus ssDNA provided high specificity and selectivity during screening methods compared with Pap smear. The DNA probe for HPV 18, 5' COOH-GAT CCA GAA GGT ACA GAC GGG GAG GGC ACG 3', while 5'COOH-GGG CGC TGT GCA GTG TGT TGG AGA CCC CGA3' as DNA probe for HPV 58 designed with 66.77% guanine (G) and cytosine (C) content for both. Our virus ssDNA probe for the HPV biosensor promises high sensitivity, specificity, selectivity, repeatability, low fluid consumption, and will be useful in mini-size diagnostic devices for cervical cancer detection.


Assuntos
Nanopartículas Metálicas , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano 18/genética , Neoplasias do Colo do Útero/diagnóstico , Ouro , Infecções por Papillomavirus/diagnóstico , Papillomaviridae/genética , Sondas de DNA , Proteínas Oncogênicas Virais/genética
2.
Crit Rev Anal Chem ; 52(7): 1511-1523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34092138

RESUMO

The importance of nanotechnology in medical applications especially with biomedical sensing devices is undoubted. Several medical diagnostics have been developed by taking the advantage of nanomaterials, especially with electrical biosensors. Biosensors have been predominantly used for the quantification of different clinical biomarkers toward detection, screening, and follow-up the treatment. At present, ovarian cancer is one of the severe complications that cannot be identified until it becomes most dangerous as the advanced stage. Based on the American Cancer Society, 20% of cases involved in the detection of ovarian cancer are diagnosed at an early stage and 80% diagnosed at the later stages. The patient just has a common digestive problem and stomach ache as early symptoms and people used to ignore these symptoms. Micro ribonucleic acid (miRNA) is classified as small non-coding RNAs, their expressions change due to the association of cancer development and progression. This article reviews and discusses on the currently available strategies for the early detection of ovarian cancers using miRNA as a biomarker associated with electrical biosensors. A unique miRNA-based biomarker detections are specially highlighted with biosensor platforms to diagnose ovarian cancer.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Neoplasias Ovarianas , Biomarcadores , Detecção Precoce de Câncer , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Nanotecnologia , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética
3.
RSC Adv ; 11(51): 31972-31982, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35495522

RESUMO

Modification of a ZrO2 based catalyst with selected transition metals dopants has shown promising improvement in the catalytic activity of palmitic acid ketonization. Small amounts of metal oxide deposition on the surface of the ZrO2 catalyst enhances the yield of palmitone (16-hentriacontanone) as the major product with pentadecane as the largest side product. This investigation explores the effects of addition of carefully chosen metal oxides (Fe2O3, NiO, MnO2, CeO2, CuO, CoO, Cr2O3, La2O3 and ZnO) as dopants on bulk ZrO2. The catalysts are prepared via a deposition-precipitation method followed by calcination at 550 °C and characterized by XRD, BET-surface area, TPD-CO2, TPD-NH3, FESEM, TEM and XPS. The screening of synthesized catalysts was carried out with 5% catalyst loading onto 15 g of pristine palmitic acid and the reaction carried out at 340 °C for 3 h. Preliminary studies show catalytic activity improvement with addition of dopants in the order of La2O3/ZrO2 < CoO/ZrO2 < MnO2/ZrO2 with the highest palmitic acid conversion of 92% and palmitone yield of 27.7% achieved using 5% MnO2/ZrO2 catalyst. Besides, NiO/ZrO2 exhibits high selectivity exclusively for pentadecane compared to other catalysts with maximum yield of 24.9% and conversion of 64.9% is observed. Therefore, the changes in physicochemical properties of the dopant added ZrO2 catalysts and their influence in palmitic acid ketonization reaction is discussed in detail.

4.
Luminescence ; 33(2): 260-266, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29024360

RESUMO

Carbon-based quantum dots (C-QDs) were synthesized through microwave-assisted carbonization of an aqueous starch suspension mediated by sulphuric and phosphoric acids. The as-prepared C-QDs showed blue, green and yellow luminescence without the addition of any surface-passivating agent. The C-QDs were further analyzed by UV-vis spectroscopy to measure the optical response of the organic compound. The energy gaps revealed narrow sizing of C-QDs in the semiconductor range. The optical refractive index and dielectric constant were investigated. The C-QDs size distribution was characterized. The results suggested an easy route to the large scale production of C-QDs materials.


Assuntos
Carbono/química , Pontos Quânticos/química , Amido/química , Luminescência , Tamanho da Partícula , Análise Espectral
5.
Biosens Bioelectron ; 93: 146-154, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27660016

RESUMO

Surface acoustic wave mediated transductions have been widely used in the sensors and actuators applications. In this study, a shear horizontal surface acoustic wave (SHSAW) was used for the detection of food pathogenic Escherichia coli O157:H7 (E.coli O157:H7), a dangerous strain among 225 E. coli unique serotypes. A few cells of this bacterium are able to cause young children to be most vulnerable to serious complications. Presence of higher than 1cfu E.coli O157:H7 in 25g of food has been considered as a dangerous level. The SHSAW biosensor was fabricated on 64° YX LiNbO3 substrate. Its sensitivity was enhanced by depositing 130.5nm thin layer of SiO2 nanostructures with particle size lesser than 70nm. The nanostructures act both as a waveguide as well as a physical surface modification of the sensor prior to biomolecular immobilization. A specific DNA sequence from E. coli O157:H7 having 22 mers as an amine-terminated probe ssDNA was immobilized on the thin film sensing area through chemical functionalization [(CHO-(CH2)3-CHO) and APTES; NH2-(CH2)3-Si(OC2H5)3]. The high-performance of sensor was shown with the specific oligonucleotide target and attained the sensitivity of 0.6439nM/0.1kHz and detection limit was down to 1.8femto-molar (1.8×10-15M). Further evidence was provided by specificity analysis using single mismatched and complementary oligonucleotide sequences.


Assuntos
Técnicas Biossensoriais/métodos , DNA Bacteriano/isolamento & purificação , DNA de Cadeia Simples/isolamento & purificação , Escherichia coli O157/isolamento & purificação , DNA Bacteriano/química , DNA de Cadeia Simples/química , Escherichia coli O157/patogenicidade , Microbiologia de Alimentos , Ouro/química , Humanos , Nanoestruturas/química , Dióxido de Silício/química , Som
6.
Appl Microbiol Biotechnol ; 100(16): 6955-69, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27350620

RESUMO

Aptamers are single-stranded nucleic acids or peptides identified from a randomized combinatorial library through specific interaction with the target of interest. Targets can be of any size, from small molecules to whole cells, attesting to the versatility of aptamers for binding a wide range of targets. Aptamers show drug properties that are analogous to antibodies, with high specificity and affinity to their target molecules. Aptamers can penetrate disease-causing microbial and mammalian cells. Generated aptamers that target surface biomarkers act as cell-targeting agents and intracellular delivery vehicles. Within this context, the "cell-internalizing aptamers" are widely investigated via the process of cell uptake with selective binding during in vivo systematic evolution of ligands by exponential enrichment (SELEX) or by cell-internalization SELEX, which targets cell surface antigens to be receptors. These internalizing aptamers are highly preferable for the localization and functional analyses of multiple targets. In this overview, we discuss the ways by which internalizing aptamers are generated and their successful applications. Furthermore, theranostic approaches featuring cell-internalized aptamers are discussed with the purpose of analyzing and diagnosing disease-causing pathogens.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Transporte Biológico/genética , Portadores de Fármacos/metabolismo , Técnica de Seleção de Aptâmeros , Biomarcadores/metabolismo , Humanos
7.
Anal Chim Acta ; 917: 1-18, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27026595

RESUMO

Field-effect transistors (FETs) have succeeded in modern electronics in an era of computers and hand-held applications. Currently, considerable attention has been paid to direct electrical measurements, which work by monitoring changes in intrinsic electrical properties. Further, FET-based sensing systems drastically reduce cost, are compatible with CMOS technology, and ease down-stream applications. Current technologies for sensing applications rely on time-consuming strategies and processes and can only be performed under recommended conditions. To overcome these obstacles, an overview is presented here in which we specifically focus on high-performance FET-based sensor integration with nano-sized materials, which requires understanding the interaction of surface materials with the surrounding environment. Therefore, we present strategies, material depositions, device structures and other characteristics involved in FET-based devices. Special attention was given to silicon and polyaniline nanowires and graphene, which have attracted much interest due to their remarkable properties in sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...