Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(8): 2237-2252, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38456773

RESUMO

Metastatic tumors have poor prognoses for progression-free and overall survival for all cancer patients. Rare circulating tumor cells (CTCs) and rarer circulating tumor cell clusters (CTCCs) are potential biomarkers of metastatic growth, with CTCCs representing an increased risk factor for metastasis. Current detection platforms are optimized for ex vivo detection of CTCs only. Microfluidic chips and size exclusion methods have been proposed for CTCC detection; however, they lack in vivo utility and real-time monitoring capability. Confocal backscatter and fluorescence flow cytometry (BSFC) has been used for label-free detection of CTCCs in whole blood based on machine learning (ML) enabled peak classification. Here, we expand to a deep-learning (DL)-based, peak detection and classification model to detect CTCCs in whole blood data. We demonstrate that DL-based BSFC has a low false alarm rate of 0.78 events per min with a high Pearson correlation coefficient of 0.943 between detected events and expected events. DL-based BSFC of whole blood maintains a detection purity of 72% and a sensitivity of 35.3% for both homotypic and heterotypic CTCCs starting at a minimum size of two cells. We also demonstrate through artificial spiking studies that DL-based BSFC is sensitive to changes in the number of CTCCs present in the samples and does not add variability in detection beyond the expected variability from Poisson statistics. The performance established by DL-based BSFC motivates its use for in vivo detection of CTCCs. Using transfer learning, we additionally validate DL-based BSFC on blood samples from different species and cancer cell types. Further developments of label-free BSFC to enhance throughput could lead to critical applications in the clinical detection of CTCCs and ex vivo isolation of CTCC from whole blood with minimal disruption and processing steps.


Assuntos
Aprendizado Profundo , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Citometria de Fluxo , Linhagem Celular Tumoral , Separação Celular/métodos
2.
J Biomed Opt ; 28(12): 126006, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38144697

RESUMO

Significance: Label-free, two-photon excited fluorescence (TPEF) imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of numerous diseases. However, noise and other artifacts present in these images severely complicate the extraction of biologically useful information. Aim: We aim to employ deep neural architectures in the synthesis of a multiscale denoising algorithm optimized for restoring metrics of metabolic activity from low-signal-to-noise ratio (SNR), TPEF images. Approach: TPEF images of reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavoproteins (FAD) from freshly excised human cervical tissues are used to assess the impact of various denoising models, preprocessing methods, and data on metrics of image quality and the recovery of six metrics of metabolic function from the images relative to ground truth images. Results: Optimized recovery of the redox ratio and mitochondrial organization is achieved using a novel algorithm based on deep denoising in the wavelet transform domain. This algorithm also leads to significant improvements in peak-SNR (PSNR) and structural similarity index measure (SSIM) for all images. Interestingly, other models yield even higher PSNR and SSIM improvements, but they are not optimal for recovery of metabolic function metrics. Conclusions: Denoising algorithms can recover diagnostically useful information from low SNR label-free TPEF images and will be useful for the clinical translation of such imaging.


Assuntos
Aprendizado Profundo , Humanos , Diagnóstico por Imagem , Razão Sinal-Ruído , Análise de Ondaletas , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
3.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577660

RESUMO

Metastatic tumors have poor prognoses for progression-free and overall survival for all cancer patients. Rare circulating tumor cells (CTCs) and rarer circulating tumor cell clusters (CTCCs) are potential biomarkers of metastatic growth, with CTCCs representing an increased risk factor for metastasis. Current detection platforms are optimized for ex vivo detection of CTCs only. Microfluidic chips and size exclusion methods have been proposed for CTCC detection; however, they lack in vivo utility and real-time monitoring capability. Confocal backscatter and fluorescence flow cytometry (BSFC) has been used for label-free detection of CTCCs in whole blood based on machine learning (ML) enabled peak classification. Here, we expand to a deep-learning (DL) -based, peak detection and classification model to detect CTCCs in whole blood data. We demonstrate that DL-based BSFC has a low false alarm rate of 0.78 events/min with a high Pearson correlation coefficient of 0.943 between detected events and expected events. DL-based BSFC of whole blood maintains a detection purity of 72% and a sensitivity of 35.3% for both homotypic and heterotypic CTCCs starting at a minimum size of two cells. We also demonstrate through artificial spiking studies that DL-based BSFC is sensitive to changes in the number of CTCCs present in the samples and does not add variability in detection beyond the expected variability from Poisson statistics. The performance established by DL-based BSFC motivates its use for in vivo detection of CTCCs. Further developments of label-free BSFC to enhance throughput could lead to critical applications in the clinical detection of CTCCs and ex vivo isolation of CTCC from whole blood with minimal disruption and processing steps.

4.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333366

RESUMO

Label-free, two-photon imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of numerous diseases. However, this modality suffers from low signal arising from limitations imposed by the maximum permissible dose of illumination and the need for rapid image acquisition to avoid motion artifacts. Recently, deep learning methods have been developed to facilitate the extraction of quantitative information from such images. Here, we employ deep neural architectures in the synthesis of a multiscale denoising algorithm optimized for restoring metrics of metabolic activity from low-SNR, two-photon images. Two-photon excited fluorescence (TPEF) images of reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavoproteins (FAD) from freshly excised human cervical tissues are used. We assess the impact of the specific denoising model, loss function, data transformation, and training dataset on established metrics of image restoration when comparing denoised single frame images with corresponding six frame averages, considered as the ground truth. We further assess the restoration accuracy of six metrics of metabolic function from the denoised images relative to ground truth images. Using a novel algorithm based on deep denoising in the wavelet transform domain, we demonstrate optimal recovery of metabolic function metrics. Our results highlight the promise of denoising algorithms to recover diagnostically useful information from low SNR label-free two-photon images and their potential importance in the clinical translation of such imaging.

5.
Sci Rep ; 12(1): 10721, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750889

RESUMO

Circulating tumor cell clusters (CTCCs) are rare cellular events found in the blood stream of metastatic tumor patients. Despite their scarcity, they represent an increased risk for metastasis. Label-free detection methods of these events remain primarily limited to in vitro microfluidic platforms. Here, we expand on the use of confocal backscatter and fluorescence flow cytometry (BSFC) for label-free detection of CTCCs in whole blood using machine learning for peak detection/classification. BSFC uses a custom-built flow cytometer with three excitation wavelengths (405 nm, 488 nm, and 633 nm) and five detectors to detect CTCCs in whole blood based on corresponding scattering and fluorescence signals. In this study, detection of CTCC-associated GFP fluorescence is used as the ground truth to assess the accuracy of endogenous back-scattered light-based CTCC detection in whole blood. Using a machine learning model for peak detection/classification, we demonstrated that the combined use of backscattered signals at the three wavelengths enable detection of ~ 93% of all CTCCs larger than two cells with a purity of > 82% and an overall accuracy of > 95%. The high level of performance established through BSFC and machine learning demonstrates the potential for label-free detection and monitoring of CTCCs in whole blood. Further developments of label-free BSFC to enhance throughput could lead to important applications in the isolation of CTCCs in whole blood with minimal disruption and ultimately their detection in vivo.


Assuntos
Células Neoplásicas Circulantes , Citometria de Fluxo/métodos , Humanos , Aprendizado de Máquina , Microfluídica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...