Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(6): e0286625, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267258

RESUMO

Helianthus tuberosus L. (Jerusalem artichoke) produce inulin, a type of fructan, which possesses several biotechnology applications, e.g., sugar syrup, prebiotics, fiber in diabetic food, enabling blood sugar and cholesterol reduction. Drought reduces inulin accumulation in the tubers of Jerusalem artichoke as the plants protect themselves from this stress by induction of stress gene responses, effecting growth reduction. Endophytic bacteria are promising candidates to promote plant growth and yield particularly under abiotic stress. Therefore, three endophytic bacteria with plant growth promoting properties were examined for their ability to improve Jerusalem artichoke growth and yield under both well-watered and drought conditions when inoculated individually or in combinations in pot experiments with 2 factorial random complete block design. The interactions of the endophytic bacteria and plant host determined the differential gene expression in response to drought as revealed by quantitative polymerase chain reaction. Single inoculum of the endophytic bacteria increased the height, weight, root traits, and harvest index of Jerusalem artichoke compared to co-inocula under both well-watered and drought conditions. However, the co-inocula of Rossellomorea aquimaris strain 3.13 and Bacillus velezensis strain 5.18 proved to be a synergistic combination leading to high inulin accumulation; while the co-inocula of B. velezensis strain 5.18 and Micrococcus luteus strain 4.43 were not beneficial when used in combination. The genes, dehydrin like protein and ethylene responsive element binding factor, were upregulated in the plants inoculated with single inoculum and co-inocula of all endophytic bacteria during drought stress. Moreover, the gene expression of indole-3-acetic acid (IAA) amido synthetase were up-regulated in Jerusalem artichoke inoculated with M. luteus strain 4.43 during drought stress. The fructan:fructan 1-fructosyltransferase (1-FFT) was also stimulated by the endophytic bacteria particularly in drought condition; the results of this study could explain the relationship between endophytic bacteria and plant host for growth and yield promotion under well-watered and drought conditions.


Assuntos
Helianthus , Inulina , Regulação para Cima , Genes de Plantas , Secas , Frutanos/metabolismo , Bactérias/genética , Plantas/genética
2.
Heliyon ; 9(3): e14201, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36923856

RESUMO

The Cropping System Model (CSM)-MANIHOT-Cassava provides the opportunity to determine target environments for cassava (Manihot esculenta Crantz) yield trials by simulating growth and yield data for various environments. The aim of this research was to investigate whether cassava production on paddy fields in Northeast, Thailand could be grouped into mega-environments using the model. Simulations for four different cassava genotypes grown on paddy field following rice harvest was conducted for various soil types and the weather data from 1988 to 2017. The genotype main effect plus genotype by environment interaction (GGE biplot) technique was used to group the mega-environments. The analyses of yearly data showed inconsistent results across years for environment grouping and for the winning genotypes of the individual environment group. An analysis using GGE biplot with the average value of the simulated storage root dry weight (SDW) for 30 years indicated that all 41 environments were grouped into two different mega-environments. This study demonstrated the ability of the CSM-MANIHOT-Cassava to help identify the mega-environments for cassava yield trials on paddy field during off-season of rice that could help reduce both time and resources.

3.
Plants (Basel) ; 11(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36079689

RESUMO

Temperature is one of the most critical factors affecting cassava metabolism and growth. This research was conducted to investigate the effects of short-term exposure to extreme cool (15 °C) and hot (45 °C) temperature on photosynthesis, biochemical and proteomics changes in potted plants of two cassava cultivars, namely Rayong 9 and Kasetsart 50. One-month-old plants were exposed to 15, 30, and 45 °C for 60 min in a temperature chamber under light intensity of 700 µmol m-2 s-1. Compared to the optimum temperature (30 °C), exposure to 15 °C resulted in 28% reduction in stomatal conductance (gs) and 62% reduction in net photosynthesis rate (Pn). In contrast, gs under 45 °C increased 2.61 folds, while Pn was reduced by 50%. The lower Pn but higher electron transport rate (ETR) of the cold-stressed plants indicated that a greater proportion of electrons was transported via alternative pathways to protect chloroplast from being damaged by reactive oxygen species (ROS). Moreover, malondialdehyde (MDA) contents, a marker related to the amount of ROS, were significantly higher at low temperature. Proteomics analysis revealed some interesting differentially expressed proteins (DEPs) including annexin, a multi-functional protein functioning in early events of heat stress signaling. In response to low-temperature stress, AP2/ERF domain-containing protein (a cold-related transcription factor) and glutaredoxin domain-containing protein (a component of redox signaling network under cold stress) were detected. Taken together, both cultivars were more sensitive to low than high temperature. Moreover, Rayong 9 displayed higher Pn under both temperature stresses, and was more efficient in controlling ROS under cold stress than Kasetsart 50.

4.
J Microbiol Biotechnol ; 29(11): 1777-1789, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31546292

RESUMO

Drought is more concerned to be a huge problem for agriculture as it affects plant growth and yield. Endophytic bacteria act as plant growth promoting bacteria that have roles for improving plant growth under stress conditions. The properties of four strains of endophytic bacteria were determined under water deficit medium with 20% polyethylene glycol. Bacillus aquimaris strain 3.13 showed high 1-aminocyclopropane-1-carboxylate (ACC) deaminase production; Micrococcus luteus strain 4.43 produced indole acetic acid (IAA). Exopolysaccharide production was high in Bacillus methylotrophicus strain 5.18 while Bacillus sp. strain 5.2 did not show major properties for drought response. Inoculation of endophytic bacteria into plants, strain 3.13 and 4.43 increased height, shoot and root weight, root length, root diameter, root volume, root area and root surface of Jerusalem artichoke grown under water limitation, clearly shown in water supply at 1/3 of available water. These increases were caused by bacteria ACC deaminase and IAA production; moreover, strain 4.43 boosted leaf area and chlorophyll levels, leading to increased photosynthesis under drought at 60 days of planting. The harvest index was high in the treatment with strain 4.43 and 3.13 under 1/3 of available water, promoting tuber numbers and tuber weight. Inulin content was unchanged in the control between well-watered and drought conditions. In comparison, inulin levels were higher in the endophytic bacteria treatment under both conditions, although yields dipped under drought. Thus, the endophytic bacteria promoted in plant growth and yield under drought; they had outstanding function in the enhancement of inulin content under wellwatered condition.


Assuntos
Secas , Endófitos/fisiologia , Helianthus/crescimento & desenvolvimento , Helianthus/microbiologia , Estresse Fisiológico , Bacillus/metabolismo , Bacillus/fisiologia , Biomassa , Carbono-Carbono Liases/metabolismo , Clorofila/metabolismo , Endófitos/metabolismo , Helianthus/metabolismo , Ácidos Indolacéticos/metabolismo , Inulina/metabolismo , Micrococcus luteus/metabolismo , Micrococcus luteus/fisiologia , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Polissacarídeos Bacterianos/metabolismo
5.
Breed Sci ; 67(3): 207-212, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28744173

RESUMO

Peanut seeds are rich in arginine, an amino acid that has several positive effects on human health. Establishing the genetic variability of arginine content in peanut will be useful for breeding programs that have high arginine as one of their goals. The objective of this study was to evaluate the variation of arginine content, pods/plant, seeds/pod, seed weight, and yield in Valencia peanut germplasm. One hundred and thirty peanut genotypes were grown under field condition for two years. A randomized complete block design with three replications was used for this study. Arginine content was analyzed in peanut seeds at harvest using spectrophotometry. Yield and yield components were recorded for each genotype. Significant differences in arginine content and yield components were found in the tested Valencia peanut germplasm. Arginine content ranged from 8.68-23.35 µg/g seed. Kremena was the best overall genotype of high arginine content, number of pods/plant, 100 seed weight and pod yield.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...