Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Hum Gene Ther ; 33(19-20): 1023-1036, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35686451

RESUMO

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), a chronic disease that affects multiple organs, including the lung. We developed a CF ferret model of a scarless G551→D substitution in CFTR (CFTRG551D-KI), enabling approaches to correct this gating mutation in CF airways via gene editing. Homology-directed repair (HDR) was tested in Cas9-expressing CF airway basal cells (Cas9-GKI) from this model, as well as reporter basal cells (Y66S-Cas9-GKI) that express an integrated nonfluorescent Y66S-EGFP (enhanced green fluorescent protein) mutant gene to facilitate rapid assessment of HDR by the restoration of fluorescence. Recombinant adeno-associated virus (rAAV) vectors were used to deliver two DNA templates and sgRNAs for dual-gene editing at the EGFP and CFTR genes, followed by fluorescence-activated cell sorting of EGFPY66S-corrected cells. When gene-edited airway basal cells were polarized at an air-liquid interface, unsorted and EGFPY66S-corrected sorted populations gave rise to 26.0% and 70.4% CFTR-mediated Cl- transport of that observed in non-CF cultures, respectively. The consequences of gene editing at the CFTRG551D locus by HDR and nonhomologous end joining (NHEJ) were assessed by targeted gene next-generation sequencing (NGS) against a specific amplicon. NGS revealed HDR corrections of 3.1% of G551 sequences in the unsorted population of rAAV-infected cells, and 18.4% in the EGFPY66S-corrected cells. However, the largest proportion of sequences had indels surrounding the CRISPR (clustered regularly interspaced short palindromic repeats) cut site, demonstrating that NHEJ was the dominant repair pathway. This approach to simultaneously coedit at two genomic loci using rAAV may have utility as a model system for optimizing gene-editing efficiencies in proliferating airway basal cells through the modulation of DNA repair pathways in favor of HDR.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Furões/genética , Furões/metabolismo , Vetores Genéticos/genética , Fibrose Cística/genética , Fibrose Cística/terapia , Mutação , Pulmão/metabolismo , DNA
2.
mBio ; 11(6)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33158999

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates throughout human airways. The polarized human airway epithelium (HAE) cultured at an airway-liquid interface (HAE-ALI) is an in vitro model mimicking the in vivo human mucociliary airway epithelium and supports the replication of SARS-CoV-2. Prior studies characterized only short-period SARS-CoV-2 infection in HAE. In this study, continuously monitoring the SARS-CoV-2 infection in HAE-ALI cultures for a long period of up to 51 days revealed that SARS-CoV-2 infection was long lasting with recurrent replication peaks appearing between an interval of approximately 7 to 10 days, which was consistent in all the tested HAE-ALI cultures derived from 4 lung bronchi of independent donors. We also identified that SARS-CoV-2 does not infect HAE from the basolateral side, and the dominant SARS-CoV-2 permissive epithelial cells are ciliated cells and goblet cells, whereas virus replication in basal cells and club cells was not detected. Notably, virus infection immediately damaged the HAE, which is demonstrated by dispersed zonula occludens-1 (ZO-1) expression without clear tight junctions and partial loss of cilia. Importantly, we identified that SARS-CoV-2 productive infection of HAE requires a high viral load of >2.5 × 105 virions per cm2 of epithelium. Thus, our studies highlight the importance of a high viral load and that epithelial renewal initiates and maintains a recurrent infection of HAE with SARS-CoV-2.IMPORTANCE The pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to >35 million confirmed cases and >1 million fatalities worldwide. SARS-CoV-2 mainly replicates in human airway epithelia in COVID-19 patients. In this study, we used in vitro cultures of polarized human bronchial airway epithelium to model SARS-CoV-2 replication for a period of 21 to 51 days. We discovered that in vitro airway epithelial cultures endure a long-lasting SARS-CoV-2 propagation with recurrent peaks of progeny virus release at an interval of approximately 7 to 10 days. Our study also revealed that SARS-CoV-2 infection causes airway epithelia damage with disruption of tight junction function and loss of cilia. Importantly, SARS-CoV-2 exhibits a polarity of infection in airway epithelium only from the apical membrane; it infects ciliated and goblet cells but not basal and club cells. Furthermore, the productive infection of SARS-CoV-2 requires a high viral load of over 2.5 × 105 virions per cm2 of epithelium. Our study highlights that the proliferation of airway basal cells and regeneration of airway epithelium may contribute to the recurrent infections.


Assuntos
Betacoronavirus/fisiologia , Modelos Biológicos , Mucosa Respiratória/virologia , Brônquios/citologia , Células Cultivadas , Células Epiteliais/patologia , Células Epiteliais/virologia , Humanos , Cinética , Mucosa Respiratória/citologia , Mucosa Respiratória/patologia , SARS-CoV-2 , Carga Viral , Tropismo Viral , Liberação de Vírus , Replicação Viral
3.
bioRxiv ; 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32869024

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates throughout human airways. The polarized human airway epithelium (HAE) cultured at an airway-liquid interface (HAE-ALI) is an in vitro model mimicking the in vivo human mucociliary airway epithelium and supports the replication of SARS-CoV-2. However, previous studies only characterized short-period SARS-CoV-2 infection in HAE. In this study, continuously monitoring the SARS-CoV-2 infection in HAE-ALI cultures for a long period of up to 51 days revealed that SARS-CoV-2 infection was long lasting with recurrent replication peaks appearing between an interval of approximately 7-10 days, which was consistent in all the tested HAE-ALI cultures derived from 4 lung bronchi of independent donors. We also identified that SARS-CoV-2 does not infect HAE from the basolateral side, and the dominant SARS-CoV-2 permissive epithelial cells are ciliated cells and goblet cells, whereas virus replication in basal cells and club cells was not detectable. Notably, virus infection immediately damaged the HAE, which is demonstrated by dispersed Zonula occludens-1 (ZO-1) expression without clear tight junctions and partial loss of cilia. Importantly, we identified that SARS-CoV-2 productive infection of HAE requires a high viral load of 2.5 × 10 5 virions per cm 2 of epithelium. Thus, our studies highlight the importance of a high viral load and that epithelial renewal initiates and maintains a recurrent infection of HAE with SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...