Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 61: 86-98, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29103991

RESUMO

Mammalian nucleotide excision repair (NER) eliminates the broadest diversity of bulky lesions from DNA with wide specificity. However, the double incision efficiency for structurally different adducts can vary over several orders of magnitude. Therefore, great attention is drawn to the question of the relationship among structural properties of bulky DNA lesions and the rate of damage elimination. This paper studies the properties of several structurally diverse synthetic (model) DNAs containing bulky modifications. Model DNAs have been designed using modified nucleosides (exo-N-{2-N-[N-(4-azido-2,5-difluoro-3-chloropyridin-6-yl)-3-aminopropionyl]aminoethyl}-2'-deoxycytidine (Fap-dC) and 5-{1-[6-(5[6]-fluoresceinylcarbomoyl)hexanoyl]-3-aminoallyl}-2'-deoxyuridine (Flu-dU)) and the nonnucleosidic reagent N-[6-(9-antracenylcarbomoyl)hexanoyl]-3-amino-1,2-propandiol (nAnt). The impact of these lesions on spatial organization and stability of the model DNA was evaluated. Their affinity for the damage sensor XPC was also studied. It was expected, that the values of melting temperature decrease, bending angles and KD values clearly define the row of model DNA substrate properties such as Flu-dU-DNA>>nAnt≈Fap-dC-DNA. Unexpectedly the experimentally estimated levels of the substrate properties were actually in the row: nAnt-DNA>>Flu-dU-DNA>>Fap-dC-DNA. Molecular dynamics simulations have revealed structural and energetic bases for the discrepancies observed. DNA destabilization patterns plotted explain these results on a structural basis in terms of differences in dynamic perturbations of stacking interactions.


Assuntos
Reparo do DNA , DNA/química , DNA/genética , Mamíferos/genética , Conformação de Ácido Nucleico , Animais , Células CHO , Cricetulus , Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Polarização de Fluorescência , Humanos , Simulação de Dinâmica Molecular , Desnaturação de Ácido Nucleico , Relação Estrutura-Atividade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...