Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(28): e2202364, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35579491

RESUMO

The integration of active cell machinery with synthetic building blocks is the bridge toward developing synthetic cells with biological functions and beyond. Self-replication is one of the most important tasks of living systems, and various complex machineries exist to execute it. In Escherichia coli, a contractile division ring is positioned to mid-cell by concentration oscillations of self-organizing proteins (MinCDE), where it severs membrane and cell wall. So far, the reconstitution of any cell division machinery has exclusively been tied to liposomes. Here, the reconstitution of a rudimentary bacterial divisome in fully synthetic bicomponent dendrimersomes is shown. By tuning the membrane composition, the interaction of biological machinery with synthetic membranes can be tailored to reproduce its dynamic behavior. This constitutes an important breakthrough in the assembly of synthetic cells with biological elements, as tuning of membrane-divisome interactions is the key to engineering emergent biological behavior from the bottom-up.


Assuntos
Células Artificiais , Proteínas de Escherichia coli , Proteínas de Bactérias/metabolismo , Divisão Celular , Parede Celular/metabolismo , Escherichia coli/metabolismo
2.
Macromol Biosci ; 22(5): e2200025, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35170202

RESUMO

Interfacing artificial materials with biological tissues remains a challenge. The direct contact of their surface with the biological milieu results in multiscale interactions, in which biomacromolecules adsorb and act as transducers mediating the interactions with cells and tissues. So far, only antifouling polymer brushes have been able to conceal the surface of synthetic materials. However, their complex synthesis has precluded their translation to applications. Here, it is shown that ultrathin surface-attached hydrogel coatings of N-(2-hydroxypropyl) methacrylamide (HPMA) and carboxybetaine methacrylamide (CBMAA) provide the same level of protection as brushes. In spite of being readily applicable, these coatings prevent the fouling from whole blood plasma and provide a barrier to the adhesion of Gram positive and negative bacteria. The analysis of the components of the surface free energy and nanoindentation experiments reveals that the excellent antifouling properties stem from the strong surface hydrophilicity and the presence of a brush-like structure at the water interface. Moreover, these coatings can be functionalized to achieve antimicrobial activity while remaining stealth and non-cytotoxic to eukaryotic cells. Such level of performance is previously only achieved with brushes. Thus, it is anticipated that this readily applicable strategy is a promising route to enhance the biocompatibility of real biomedical devices.


Assuntos
Materiais Revestidos Biocompatíveis , Hidrogéis , Bactérias , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Polímeros/química , Propriedades de Superfície
3.
ACS Sens ; 4(8): 2109-2116, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31364363

RESUMO

A compact optical biosensor for direct detection of thrombin in human blood plasma (HBP) is reported. This biosensor platform is based on wavelength spectroscopy of diffraction-coupled surface plasmons on a chip with a periodically corrugated gold film that carries an antifouling thin polymer layer consisting of poly[(N-(2-hydroxypropyl)methacrylamide)-co-(carboxybetaine methacrylamide)] (poly(HPMA-co-CBMAA)) brushes. This surface architecture provides superior resistance to nonspecific and irreversible adsorption of abundant compounds in the analyzed HBP samples in comparison to standard surface modifications. The carboxylate groups along the polymer brushes were exploited for the covalent immobilization of aptamer ligands. These ligands were selected to specifically capture the target thrombin analyte from the analyzed HBP sample in a way that does not activate the coagulatory process at the biosensor surface with poly(HPMA-co-CBMAA) brushes. Direct label-free analysis of thrombin in the medically relevant concentration range (1-20 nM) is demonstrated without the need for diluting the HBP samples or using additional steps for signal enhancement. The reported platform constitutes the first step toward a portable and sensitive point-of-care device for direct detection of thrombin in human blood.


Assuntos
Técnicas Biossensoriais , Trombina/análise , Humanos , Ligantes , Polímeros/química
4.
Biomacromolecules ; 20(2): 959-968, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30605608

RESUMO

Currently, one of the most promising treatments of lipopolysaccharides (LPS)-induced sepsis is based on hemofiltration. Nevertheless, proteins rapidly adsorbed on the artificial surface of membranes which leads to activation of coagulation impairing effective scavenging of the endotoxins. To overcome this challenge, we designed polymer-brush-coated microparticles displaying antifouling properties and functionalized them with polymyxin B (PMB) to specifically scavenge LPS the most common endotoxin. Poly[( N-(2-hydroxypropyl) methacrylamide)- co-(carboxybetaine methacrylamide)] brushes were grafted from poly(glycidyl methacrylate) microparticles using photoinduced single-electron transfer living radical polymerization (SET-LRP). Notably, only parts-per-million of copper catalyst were necessary to achieve brushes able to repel adsorption of proteins from blood plasma. The open porosity of the particles, accessible to polymerization, enabled us to immobilize sufficient PMB to selectively scavenge LPS from blood plasma.


Assuntos
Incrustação Biológica/prevenção & controle , Materiais Revestidos Biocompatíveis/farmacologia , Lipopolissacarídeos/metabolismo , Plasma/metabolismo , Acrilamidas/metabolismo , Adsorção , Compostos de Epóxi/metabolismo , Humanos , Metacrilatos/metabolismo , Polimerização/efeitos dos fármacos , Polímeros/química , Polimixina B/farmacologia , Proteínas/metabolismo , Propriedades de Superfície/efeitos dos fármacos
5.
Macromol Biosci ; 18(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29356355

RESUMO

Nonthrombogenic modifications of membranes for extracorporeal membrane oxygenators (ECMOs) are of key interest. The absence of hemocompatibility of these membranes and the need of anticoagulation of patients result in severe and potentially life-threatening complications during ECMO treatment. To address the lack of hemocompatibility of the membrane, surface modifications are developed, which act as barriers to protein adsorption on the membrane and, in this way, prevent activation of the coagulation cascade. The modifications are based on nonionic and zwitterionic polymer brushes grafted directly from poly(4-methyl-1-pentene) (TPX) membranes via single electron transfer-living radical polymerization. Notably, this work introduces the first example of well-controlled surface-initiated radical polymerization of zwitterionic brushes. The antifouling layers markedly increase the recalcification time (a proxy of initiation of coagulation) compared to bare TPX membranes. Furthermore, platelet and leukocyte adhesion is drastically decreased, rendering the ECMO membranes hemocompatible.


Assuntos
Materiais Biocompatíveis , Oxigenadores de Membrana , Adsorção , Coagulação Sanguínea , Proteínas Sanguíneas/química , Adesão Celular , Humanos , Propriedades de Superfície
6.
Biomacromolecules ; 18(6): 1983-1992, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28475307

RESUMO

Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.


Assuntos
Quitosana/química , Materiais Revestidos Biocompatíveis/química , Hidrogéis/química , Metacrilatos/química , Polietilenoglicóis/química , Técnicas Biossensoriais/métodos , Plaquetas/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Radicais Livres , Humanos , Hidrogéis/farmacologia , Bombas de Infusão Implantáveis , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Polimerização , Cultura Primária de Células
7.
Biosens Bioelectron ; 81: 159-165, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26945182

RESUMO

The rapid and sensitive detection of aflatoxin M1 (AFM1) in milk by using surface plasmon resonance (SPR) biosensor is reported. This low molecular weight mycotoxin is analyzed using an indirect competitive immunoassay that is amplified by secondary antibodies conjugated with Au nanoparticles. In order to prevent fouling on the sensor surface by the constituents present in analyzed milk samples, an interface with poly(2-hydroxyethyl methacrylate) p(HEMA) brush was employed. The study presents a comparison of performance characteristics of p(HEMA)-based sensor with a regularly used polyethylene glycol-based architecture relying on mixed thiol self-assembled monolayer. Both sensors are characterized in terms of surface mass density of immobilized AFM1 conjugate as well as affinity bound primary and secondary antibodies. The efficiency of the amplification strategy based on Au nanoparticle is discussed. The biosensor allowed for highly sensitive detection of AFM1 in milk with a limit of detection (LOD) as low as 18pgmL(-1) with the analysis time of 55min.


Assuntos
Aflatoxina M1/análise , Contaminação de Alimentos/análise , Metacrilatos/química , Leite/química , Ressonância de Plasmônio de Superfície/métodos , Animais , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Compostos de Sulfidrila/química
8.
Macromol Rapid Commun ; 36(18): 1681-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26149622

RESUMO

Surface-initiated photo-induced copper-mediated radical polymerization is employed to graft a wide range of polyacrylate brushes from silicon substrates at extremely low catalyst concentrations. This is the first time that the controlled nature of the reported process is demonstrated via block copolymer formation and re-initiation experiments. In addition to unmatched copper catalyst concentrations in the range of few ppb, film thicknesses up to almost 1 µm are achieved within only 1 h.


Assuntos
Cobre/química , Luz , Polímeros/química , Catálise , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...