Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 107(1): 169-177, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29573163

RESUMO

Periprosthetic infection via skin-implant interface is a leading cause of failures and revisions in direct skeletal attachment of limb prostheses. Implants with deep porosity fabricated with skin and bone integrated pylons (SBIP) technology allow for skin ingrowth through the implant's structure creating natural barrier against infection. However, until the skin cells remodel in all pores of the implant, additional care is required to prevent from entering bacteria to the still nonoccupied pores. Temporary silver coating was evaluated in this work as a means to provide protection from infection immediately after implantation followed by dissolution of silver layer in few weeks. A sputtering coating with 1 µm thickness was selected to be sufficient for fighting infection until the deep ingrowth of skin in the porous structure of the pylon is completed. In vitro study showed less bacterial (Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa) growth on silver coated tablets compared to the control group. Analysis of cellular density of MG-63 cells, fibroblasts, and mesenchymal stem cells (MSCs) showed that silver coating did not inhibit the cell growth on the implants and did not affect cellular functional activity. The in vivo study did not show any postoperative complications during the 6-month observation period in the model of above-knee amputation in rabbits when SBIP implants, either silver-coated or untreated were inserted into the bone residuum. Three-phase scintigraphy demonstrated angiogenesis in the pores of the pylons. The findings suggest that a silver coating with well-chosen specifications can increase the safety of porous implants for direct skeletal attachment. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 169-177, 2019.


Assuntos
Antibacterianos/química , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas , Interface Osso-Implante , Materiais Revestidos Biocompatíveis/química , Implantes Experimentais/microbiologia , Prata/química , Pele , Animais , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Interface Osso-Implante/microbiologia , Interface Osso-Implante/patologia , Linhagem Celular Tumoral , Humanos , Masculino , Porosidade , Coelhos , Pele/microbiologia , Pele/patologia
2.
Oncotarget ; 7(16): 22050-63, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26959111

RESUMO

The chaperone system based on Hsp70 and proteins of the DnaJ family is known to protect tumor cells from a variety of cytotoxic factors, including anti-tumor therapy. To analyze whether this also functions in a highly malignant brain tumor, we knocked down the expression of Hsp70 (HSPA1A) and its two most abundant co-chaperones, Hdj1 (DNAJB1) and Hdj2 (DNAJA1) in a C6 rat glioblastoma cell line. As expected, tumor depletion of Hsp70 caused a substantial reduction in its growth rate and increased the survival of tumor-bearing animals, whereas the reduction of Hdj1 expression had no effect. Unexpectedly, a reduction in the expression of Hdj2 led to the enhanced aggressiveness of the C6 tumor, demonstrated by its rapid growth, metastasis formation and a 1.5-fold reduction in the lifespan of tumor-bearing animals. The in vitro reduction of Hdj2 expression reduced spheroid density and simultaneously enhanced the migration and invasion of C6 cells. At the molecular level, a knock-down of Hdj2 led to the relocation of N-cadherin and the enhanced activity of metalloproteinases 1, 2, 8 and 9, which are markers of highly malignant cancer cells. The changes in the actin cytoskeleton in Hdj2-depleted cells indicate that the protein is also important for prevention of the amoeboid-like transition of tumor cells. The results of this study uncover a completely new role for the Hdj2 co-chaperone in tumorigenicity and suggest that the protein is a potential drug target.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Proteínas de Choque Térmico HSP40/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP70/metabolismo , Masculino , Invasividade Neoplásica/patologia , Ratos , Ratos Wistar
3.
Drug Des Devel Ther ; 9: 1717-27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25848208

RESUMO

The management of chronic skin wounds represents a major therapeutic challenge. The synthesized dipeptide (Glu-Trp-ONa) and its acylated analogue (R-Glu-Trp-ONa) were assessed in the model of nonhealing dermal wounds in rabbits in relation to their healing properties in wound closure. Following wound modeling, the rabbits received a course of intraperitoneal injections of Glu-Trp-ONa or R-Glu-Trp-ONa. Phosphate-buffered saline and Solcoseryl® were applied as negative and positive control agents, respectively. An injection of Glu-Trp-ONa and R-Glu-Trp-ONa decreased the period of wound healing in animals in comparison to the control and Solcoseryl-treated groups. Acylation of Glu-Trp-ONa proved to be beneficial as related to the healing properties of the dipeptide. Subsequent zymography analyses showed that the applied peptides decreased the proteolytic activity of matrix metalloproteinases MMP-9, MMP-8, and MMP-2 in the early inflammatory phase and reversely increased the activity of MMP-9, MMP-8, and MMP-1 in the remodeling phase. Histological analyses of the wound sections (hematoxylin-eosin, Mallory's staining) confirmed the enhanced formation of granulation tissue and re-epithelialization in the experimental groups. By administering the peptides, wound closures increased significantly through the modulation of the MMPs' activity, indicating their role in wound healing.


Assuntos
Dipeptídeos/química , Dipeptídeos/farmacologia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Acilação , Animais , Doença Crônica , Dipeptídeos/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Coelhos , Pele/lesões , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...