Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(36): 24989-25004, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39186481

RESUMO

Gliomas remain challenging brain tumors to treat due to their infiltrative nature. Accurately identifying tumor boundaries during surgery is crucial for successful resection. This study introduces an innovative intraoperative visualization method utilizing surgical fluorescence microscopy to precisely locate tumor cell dissemination. Here, the focus is on the development of a novel contrasting agent (IR-Glint) for intraoperative visualization of human glial tumors comprising infrared-labeled Glint aptamers. The specificity of IR-Glint is assessed using flow cytometry and microscopy on primary cell cultures. In vivo effectiveness is studied on mouse and rabbit models, employing orthotopic xenotransplantation of human brain gliomas with various imaging techniques, including PET/CT, in vivo fluorescence visualization, confocal laser scanning, and surgical microscopy. The experiments validate the potential of IR-Glint for the intraoperative visualization of gliomas using infrared imaging. IR-Glint penetrates the blood-brain barrier and can be used for both intravenous and surface applications, allowing clear visualization of the tumor. The surface application directly to the brain reduces the dosage required and mitigates potential toxic effects on the patient. The research shows the potential of infrared dye-labeled aptamers for accurately visualizing glial tumors during brain surgery. This novel aptamer-assisted fluorescence-guided surgery (AptaFGS) may pave the way for future advancements in the field of neurosurgery.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias Encefálicas , Cirurgia Assistida por Computador , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Animais , Humanos , Camundongos , Aptâmeros de Nucleotídeos/química , Cirurgia Assistida por Computador/métodos , Coelhos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Corantes Fluorescentes/química , Raios Infravermelhos , Imagem Óptica , Linhagem Celular Tumoral
2.
Mol Ther Nucleic Acids ; 32: 267-288, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37090419

RESUMO

Here, we present DNA aptamers capable of specific binding to glial tumor cells in vitro, ex vivo, and in vivo for visualization diagnostics of central nervous system tumors. We selected the aptamers binding specifically to the postoperative human glial primary tumors and not to the healthy brain cells and meningioma, using a modified process of systematic evolution of ligands by exponential enrichment to cells; sequenced and analyzed ssDNA pools using bioinformatic tools and identified the best aptamers by their binding abilities; determined three-dimensional structures of lead aptamers (Gli-55 and Gli-233) with small-angle X-ray scattering and molecular modeling; isolated and identified molecular target proteins of the aptamers by mass spectrometry; the potential binding sites of Gli-233 to the target protein and the role of post-translational modifications were verified by molecular dynamics simulations. The anti-glioma aptamers Gli-233 and Gli-55 were used to detect circulating tumor cells in liquid biopsies. These aptamers were used for in situ, ex vivo tissue staining, histopathological analyses, and fluorescence-guided tumor and PET/CT tumor visualization in mice with xenotransplanted human astrocytoma. The aptamers did not show in vivo toxicity in the preclinical animal study. This study demonstrates the potential applications of aptamers for precise diagnostics and fluorescence-guided surgery of brain tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA