Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polar Biol ; 45(2): 203-224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35210695

RESUMO

Allometric relationships between body properties of animals are useful for a wide variety of purposes, such as estimation of biomass, growth, population structure, bioenergetic modelling and carbon flux studies. This study summarizes allometric relationships of zooplankton and nekton species that play major roles in polar marine food webs. Measurements were performed on 639 individuals of 15 species sampled during three expeditions in the Southern Ocean (winter and summer) and 2374 individuals of 14 species sampled during three expeditions in the Arctic Ocean (spring and summer). The information provided by this study fills current knowledge gaps on relationships between length and wet/dry mass of understudied animals, such as various gelatinous zooplankton, and of animals from understudied seasons and maturity stages, for example, for the krill Thysanoessa macrura and larval Euphausia superba caught in winter. Comparisons show that there is intra-specific variation in length-mass relationships of several species depending on season, e.g. for the amphipod Themisto libellula. To investigate the potential use of generalized regression models, comparisons between sexes, maturity stages or age classes were performed and are discussed, such as for the several krill species and T. libellula. Regression model comparisons on age classes of the fish E. antarctica were inconclusive about their general use. Other allometric measurements performed on carapaces, eyes, heads, telsons, tails and otoliths provided models that proved to be useful for estimating length or mass in, e.g. diet studies. In some cases, the suitability of these models may depend on species or developmental stages. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00300-021-02984-4.

2.
Glob Chang Biol ; 24(10): 4667-4681, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29999582

RESUMO

How the abundant pelagic life of the Southern Ocean survives winter darkness, when the sea is covered by pack ice and phytoplankton production is nearly zero, is poorly understood. Ice-associated ("sympagic") microalgae could serve as a high-quality carbon source during winter, but their significance in the food web is so far unquantified. To better understand the importance of ice algae-produced carbon for the overwintering of Antarctic organisms, we investigated fatty acid (FA) and stable isotope compositions of 10 zooplankton species, and their potential sympagic and pelagic carbon sources. FA-specific carbon stable isotope compositions were used in stable isotope mixing models to quantify the contribution of ice algae-produced carbon (αIce ) to the body carbon of each species. Mean αIce estimates ranged from 4% to 67%, with large variations between species and depending on the FA used for the modelling. Integrating the αIce estimates from all models, the sympagic amphipod Eusirus laticarpus was the most dependent on ice algal carbon (αIce : 54%-67%), and the salp Salpa thompsoni showed the least dependency on ice algal carbon (αIce : 8%-40%). Differences in αIce estimates between FAs associated with short-term vs. long-term lipid pools suggested an increasing importance of ice algal carbon for many species as the winter season progressed. In the abundant winter-active copepod Calanus propinquus, mean αIce reached more than 50% in late winter. The trophic carbon flux from ice algae into this copepod was between 3 and 5 mg C m-2  day-1 . This indicates that copepods and other ice-dependent zooplankton species transfer significant amounts of carbon from ice algae into the pelagic system, where it fuels the food web, the biological carbon pump and elemental cycling. Understanding the role of ice algae-produced carbon in these processes will be the key to predictions of the impact of future sea ice decline on Antarctic ecosystem functioning.


Assuntos
Carbono/metabolismo , Ecossistema , Camada de Gelo , Fitoplâncton/metabolismo , Estações do Ano , Zooplâncton/metabolismo , Animais , Regiões Antárticas , Ciclo do Carbono , Isótopos de Carbono , Ácidos Graxos/metabolismo , Cadeia Alimentar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...