Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(2): 384-392, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36687341

RESUMO

A recent article by Pan and Frenking challenges our assignment of the oxidation state of low valent group 2 compounds. With this reply, we show that our assignment of Be(+2) and Mg(+2) oxidation states in Be(cAACDip)2 and Mg(cAACDip)2 is fully consistent with our data. Some of the arguments exposed by Pan and Frenking were based on visual inspection of our figures, rather than a thorough numerical analysis. We discuss with numerical proof that some of the statements made by the authors concerning our reported data are erroneous. In addition, we provide further evidence that the criterion of the lowest orbital interaction energy in the energy decomposition analysis (EDA) method is unsuitable as a general tool to assess the valence state of the fragments. Other indicators based on natural orbitals for chemical valence (NOCV) deliver a more reliable bonding picture. We also emphasize the importance of using stable wavefunctions for any kind of analysis, including EDA.

2.
Chem Sci ; 13(22): 6583-6591, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35756523

RESUMO

Low-valent group 2 (E = Be and Mg) stabilized compounds have been long synthetically pursued. Here we discuss the electronic structure of a series of Lewis base-stabilized Be and Mg compounds. Despite the accepted zero(0) oxidation state nature of the group 2 elements of some recent experimentally accomplished species, the analysis of multireference wavefunctions provides compelling evidence for a strong diradical character with an oxidation state of +2. Thus, we elaborate on the distinction between a description as a donor-acceptor interaction L(0) ⇆ E(0) ⇄ L(0) and the internally oxidized situation, better interpreted as a diradical L(-1) → E(+2) ← L(-1) species. The experimentally accomplished examples rely on the strengthened bonds by increasing the π-acidity of the ligand; avoiding this interaction could lead to an unprecedented low-oxidation state.

3.
J Phys Chem Lett ; 13(8): 2000-2006, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35191712

RESUMO

Oxo and amino substituted purines and pyrimidines have been suggested as protonucleobases participating in ancient pre-RNA forms. Considering electromagnetic radiation as a key environmental selection pressure on early Earth, the investigation of the photophysics of modified nucleobases is crucial to determine their viability as nucleobases' ancestors and to understand the factors that rule the photostability of natural nucleobases. In this Letter, we combine femtosecond transient absorption spectroscopy and quantum mechanical simulations to reveal the photochemistry of 4-pyrimidinone, a close relative of uracil. Irradiation of 4-pyrimidinone with ultraviolet radiation populates the S1(ππ*) state, which decays to the vibrationally excited ground state in a few hundred femtoseconds. Analysis of the postirradiated sample in water reveals the formation of a 6-hydroxy-5H-photohydrate and 3-(N-(iminomethyl)imino)propanoic acid as the primary photoproducts. 3-(N-(Iminomethyl)imino)propanoic acid originates from the hydrolysis of an unstable ketene species generated from the C4-N3 photofragmentation of the pyrimidine core.


Assuntos
RNA , Raios Ultravioleta , DNA/química , Pirimidinas/química , RNA/efeitos da radiação
4.
Phys Chem Chem Phys ; 23(11): 6448-6454, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33720220

RESUMO

High-level single and multireference ab initio calculations show that the Be4 cluster behaves as a very efficient Lewis acid when interacting with conventional Lewis bases such as ammonia, water or hydrogen fluoride, to the point that the corresponding acid-base interaction triggers a sequential dissociation of all the bonds of the Lewis base. Notably, this behavior is already found for the simplest beryllium cluster, the Be2 dimer. However, whereas for Be2 the first dissociation process involves a low activation barrier which is above the reactants, for Be4 all the bond dissociation processes involve barriers below the entrance channel leading to a cascade of successive exothermic processes, which end up spontaneously in a global minimum in which the bonding patterns of both the base and the Lewis acid are completely destroyed. Indeed, the global minimum, in all cases, is stabilized by three-center Be-H-Be bonds and covalent interactions between the Be atoms and the basic center of the base, which replace the initial metallic bond stabilizing the Be4 cluster. As a consequence, in the global minimum the basic atoms (N, O and F) behave as hyper-coordinated centers. Also importantly, the Be4 cluster and its complexes present RHF-UHF instabilities (not reported before for Be4), which require the use of multireference methods to correctly describe them.

5.
J Chem Phys ; 154(4): 044302, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33514089

RESUMO

The structure, stability, and bonding of the complexes formed by the interaction of Mg4 clusters and first row Lewis bases, namely, ammonia, water, and hydrogen fluoride, have been investigated through the use of high-level G4 single-reference and CASPT2 multireference formalisms. The adducts formed reflect the high electrophilicity of the Mg4 cluster through electron density holes in the neighborhood of each metallic center. After the adduct formation, the metallic bonding of the Mg4 moiety is not significantly altered so that the hydrogen shifts from the Lewis base toward the Mg atoms lead to new local minima with enhanced stability. For the particular case of ammonia and water, the global minima obtained when all the hydrogens of the Lewis base are shifted to the Mg4 moiety have in common a very stable scaffold with a N or an O center covalently tetracoordinated to the four Mg atoms, so the initial bonding arrangements of both reactants have completely disappeared. The reactivity features exhibited by these Mg4 clusters suggest that nanostructures of this metal might have an interesting catalytic behavior.

6.
Angew Chem Int Ed Engl ; 60(3): 1498-1502, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32866305

RESUMO

Chemical bonds are traditionally assigned as electron-sharing or donor-acceptor/dative. External criteria such as the nature of the dissociation process, energy partitioning schemes, or quantum chemical topology are invoked to assess the bonding situation. However, for systems with marked multi-reference character, this binary categorization might not be precise enough to render the bonding properties. A third scenario can be foreseen: spin polarized bonds. To illustrate this, the case of a NaBH3 - cluster is presented. According to the analysis NaBH3 - exhibits a strong diradical character and cannot be classified as either electron-sharing or a dative bond. Elaborated upon are the common problems of popular bonding descriptions. Additionally, a simple model, based on the bond order and local spin indicators, which discriminates between all three bonding situations, is provided.

7.
J Phys Chem A ; 124(50): 10422-10433, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33284609

RESUMO

The substitution of canonical nucleobases by thiated analogues in natural DNA has been exploited in pharmacology, photochemotherapy, and structural biology. Thionucleobases react with adjacent thymines leading to 6-4 pyrimidine-pyrimidone photoproducts (6-4PPs), which are a major source of DNA photodamage, in particular intrastrand cross-linked photolesions. Here, we study the mechanism responsible for the formation of 6-4PPs in thionucleobases by employing quantum-mechanical calculations. We use multiconfiguration pair-density functional theory, complete active space second-order perturbation theory, and Kohn-Sham density functional theory. Scrutinizing the photochemistry of thionucleobases can elucidate the reaction mechanism of these prodrugs and identify the role that triplet excited states play in the generation of photolesions in the natural biopolymer. Three different possible mechanisms to generate the 6-4PPs are presented, and we conclude that the use of multireference approaches is indispensable to capture important features of the potential energy surface.


Assuntos
Dano ao DNA , DNA/efeitos da radiação , Compostos de Sulfidrila/química , Reagentes de Ligações Cruzadas/química , DNA/química , Dímeros de Pirimidina/química , Teoria Quântica
8.
Chemphyschem ; 21(24): 2701-2708, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32598549

RESUMO

Isolated Be2 is a typical example of a weakly bound system, but interaction with other systems may give rise to surprising bonding features. The interactions between Be2 and a set of selected neutral Cn Hn (n=2-8) π-systems have been analyzed through the use of G4 and G4MP2 ab initio methods, along with multireference CASPT2//CASPT2 calculations. Our results systematically show that the Cn Hn -Be2 -Cn Hn clusters formed are always very stable. However, the nature of this interaction is completely different when the π-system involved is a closed shell species (n=2, 4, 6, 8), or a radical (n=3, 5, 7). In the first case, the interaction does not occur with the π-system as a whole, but with specific C centers yielding rather polar but strong C-Be bonds. Nonetheless, although the Be-Be distances in these complexes are similar to the ones in compounds with ultra-strong Be-Be bonds, a close examination of their electron density distribution reveals that no Be-Be bonds exist. The situation is totally different when the interaction involves two π-radicals, Cn Hn -Be2 -Cn Hn (n=3, 5, 7). In these cases, a strong Be-Be bond is formed. Indeed, even though Be is electron deficient, the Be2 moiety behaves as an efficient electron donor towards the two π-radicals, so that the different Cn Hn -Be2 -Cn Hn (n=3, 5, 7) clusters are the result of the interaction between Be2 2+ and two L- anions. The characteristics of these two scenarios do not change when dealing with bicyclic π-compounds, such as naphthalene and pentalene, because the interaction with the Be2 moiety is localized on one of the unsaturated cycles, the other being almost a spectator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...