Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Energy Lett ; 9(4): 1871-1879, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633990

RESUMO

Kinetic and nonkinetic contributions to the Tafel slope value can be separated using a Tafel slope plot, where a constant Tafel slope region indicates kinetic meaningfulness. Here, we compare the Tafel slope values obtained from linear sweep voltammetry to the values obtained from chronoamperometry and impedance spectroscopy, and we apply the Tafel slope plot to various electrocatalytic reactions. We show that similar Tafel slope values are observed from the different techniques under high-mass-transport conditions for the oxygen evolution reaction on NiFeOOH in 0.2 M KOH. However, for the alkaline hydrogen evolution reaction and the CO2 reduction reaction, no horizontal Tafel slope regions were observed. In contrast, we obtained the expected Tafel slope of 30 mV/dec for the HER on Pt in 1 M HClO4. We argue that widespread application of the Tafel slope plot, or similar numerical differentiation techniques, would result in an improved comparison of kinetic data for many electrocatalytic reactions when the traditional Tafel plot analysis is ambiguous.

2.
ACS Catal ; 14(7): 4432-4440, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38601778

RESUMO

Electrochemical CO2 reduction on Ni has recently been shown to have the unique ability to produce longer hydrocarbon chains in small but measurable amounts. However, the effects of the many parameters of this reaction remain to be studied in more detail. Here, we have investigated the effect of temperature, bulk CO2 concentration, potential, the reactant, cations, and anions on the formation of hydrocarbons via a chain growth mechanism on Ni. We show that temperature increases the activity but also the formation of coke, which deactivates the catalyst. The selectivity and thus the chain growth probability is mainly affected by the potential and the electrolyte composition. Remarkably, CO reduction shows lower activity but a higher chain growth probability than CO2 reduction. We conclude that hydrogenation is likely to be the rate-determining step and hypothesize that this could happen either by *CO hydrogenation or by termination of the hydrocarbon chain. These insights open the way to further development and optimization of Ni for electrochemical CO2 reduction.

3.
J Am Chem Soc ; 145(28): 15343-15352, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37429023

RESUMO

Studies focused on the mechanism of CO2 electroreduction (CO2RR) aim to open up opportunities to optimize reaction parameters toward selective synthesis of desired products. However, the reaction pathways for C3 compound syntheses, especially for minor compounds, remain incompletely understood. In this study, we investigated the formation pathway for hydroxyacetone, acetone, and 1,2-propanediol through CO(2)RR, which are minor products that required long electrolysis times to be detected. Our proposed reaction mechanism is based on a systematic investigation of the reduction of several functional groups on a Cu electrode, including aldehydes, ketones, ketonealdehydes, hydroxyls, hydroxycarbonyls, and hydroxydicarbonyls, as well as the coupling between CO and C2-dicarbonyl (glyoxal) or C2-hydroxycarbonyl (glycolaldehyde). This study allowed us to derive the fundamental principles of the reduction of functional groups on Cu electrodes. Our findings suggest that the formation of ethanol does not follow the glyoxal pathway, as previously suggested but instead likely occurs via the coupling of CH3* and CO. For the C3 compounds, our results suggest that 1,2-propanediol and acetone follow the hydroxyacetone pathway during CO2RR. Hydroxyacetone is likely formed through the coupling of CO and a C2-hydroxycarbonyl intermediate, such as a glycolaldehyde-like compound, as confirmed by adding glycolaldehyde to the CO(2)-saturated solution. This finding is consistent with CO2RR product distribution, as glycolaldehyde formation during CO2RR is limited, which, in turn, limits hydroxyacetone production. Our study contributes to a better understanding of the reaction mechanism for hydroxyacetone, acetone, and 1,2-propanediol synthesis from CO2RR and gives insights into these interesting compounds that may be formed electrochemically.

4.
ACS Catal ; 13(12): 8080-8091, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37342834

RESUMO

Copper is a unique catalyst for the electrochemical CO2 reduction reaction (CO2RR) as it can produce multi-carbon products, such as ethylene and propanol. As practical electrolyzers will likely operate at elevated temperatures, the effect of reaction temperature on the product distribution and activity of CO2RR on copper is important to elucidate. In this study, we have performed electrolysis experiments at different reaction temperatures and potentials. We show that there are two distinct temperature regimes. From 18 up to ∼48 °C, C2+ products are produced with higher Faradaic efficiency, while methane and formic acid selectivity decreases and hydrogen selectivity stays approximately constant. From 48 to 70 °C, it was found that HER dominates and the activity of CO2RR decreases. Moreover, the CO2RR products produced in this higher temperature range are mainly the C1 products, namely, CO and HCOOH. We argue that CO surface coverage, local pH, and kinetics play an important role in the lower-temperature regime, while the second regime appears most likely to be related to structural changes in the copper surface.

5.
ACS Catal ; 13(7): 4339-4347, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066043

RESUMO

Selective synthesis of n-propanol from electrocatalytic CO2/CO reduction on copper remains challenging and the impact of the local interfacial effects on the production of n-propanol is not yet fully understood. Here, we investigate the competition between CO and acetaldehyde adsorption and reduction on copper electrodes and how it affects the n-propanol formation. We show that n-propanol formation can be effectively enhanced by modulating the CO partial pressure or acetaldehyde concentration in solution. Upon successive additions of acetaldehyde in CO-saturated phosphate buffer electrolytes, n-propanol formation was increased. Oppositely, n-propanol formation was the most active at lower CO flow rates in a 50 mM acetaldehyde phosphate buffer electrolyte. In a conventional carbon monoxide reduction reaction (CORR) test in KOH, we show that, in the absence of acetaldehyde in solution, an optimum ratio of n-propanol/ethylene formation is found at intermediate CO partial pressure. From these observations, we can assume that the highest n-propanol formation rate from CO2RR is reached when a suitable ratio of CO and acetaldehyde intermediates is adsorbed. An optimum ratio was also found for n-propanol/ethanol formation but with a clear decrease in the formation rate for ethanol at this optimum, while the n-propanol formation rate was the highest. As this trend was not observed for ethylene formation, this finding suggests that adsorbed methylcarbonyl (adsorbed dehydrogenated acetaldehyde) is an intermediate for the formation of ethanol and n-propanol but not for ethylene. Finally, this work may explain why it is challenging to reach high faradaic efficiencies for n-propanol, as CO and the intermediates for n-propanol synthesis (like adsorbed methylcarbonyl) compete for active sites on the surface, where CO adsorption is favored.

6.
ACS Catal ; 8(5): 4420-4428, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29755830

RESUMO

Heterogenization of molecular catalysts for CO2 electroreduction has attracted significant research activity, due to the combined advantages of homogeneous and heterogeneous catalysts. In this work, we demonstrate the strong influence of the nature of the substrate on the selectivity and reactivity of electrocatalytic CO2 reduction, as well as on the stability of the studied immobilized indium(III) protoporphyrin IX, for electrosynthesis of formic acid. Additionally, we investigate strategies to improve the CO2 reduction by tuning the chemical functionality of the substrate surface by means of electrochemical and plasma treatment and by catalyst encapsulation in polymer membranes. We point out several underlying factors that affect the performance of electrocatalytic CO2 reduction. The insights gained here allow one to optimize heterogenized molecular systems for enhanced CO2 electroreduction without modification of the catalyst itself.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...